Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

-<2- Agilent Technologies
Advanced Design System 2011.01

Feburary 2011
ADS Desktop Design Rule Checker

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

© Agilent Technologies, Inc. 2000-2011

5301 Stevens Creek Blvd., Santa Clara, CA 95052 USA

No part of this documentation may be reproduced in any form or by any means (including
electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Agilent Technologies, Inc. as governed by United
States and international copyright laws.

Acknowledgments
Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other
countries. Mentor products and processes are registered trademarks of Mentor Graphics

Corporation. * Calibre is a trademark of Mentor Graphics Corporation in the US and other
countries. "Microsoft®, Windows®, MS Windows®, Windows NT®, Windows 2000® and
Windows Internet Explorer® are U.S. registered trademarks of Microsoft Corporation.
Pentium® is a U.S. registered trademark of Intel Corporation. PostScript® and Acrobat®
are trademarks of Adobe Systems Incorporated. UNIX® is a registered trademark of the
Open Group. Oracle and Java and registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners. SystemC® is a registered
trademark of Open SystemC Initiative, Inc. in the United States and other countries and is
used with permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc..
HiSIM2 source code, and all copyrights, trade secrets or other intellectual property rights
in and to the source code in its entirety, is owned by Hiroshima University and STARC.
FLEXIm is a trademark of Globetrotter Software, Incorporated. Layout Boolean Engine by
Klaas Holwerda, v1.7 http://www.xs4all.nl/~kholwerd/bool.html| . FreeType Project,
Copyright (c) 1996-1999 by David Turner, Robert Wilhelm, and Werner Lemberg.
QuestAgent search engine (c) 2000-2002, JObjects. Motif is a trademark of the Open
Software Foundation. Netscape is a trademark of Netscape Communications Corporation.
Netscape Portable Runtime (NSPR), Copyright (c) 1998-2003 The Mozilla Organization. A
copy of the Mozilla Public License is at http://www.mozilla.org/MPL/ . FFTW, The Fastest
Fourier Transform in the West, Copyright (c) 1997-1999 Massachusetts Institute of
Technology. All rights reserved.

The following third-party libraries are used by the NlogN Momentum solver:

"This program includes Metis 4.0, Copyright © 1998, Regents of the University of
Minnesota", http://www.cs.umn.edu/~metis , METIS was written by George Karypis
(karypis@cs.umn.edu).

Intel@ Math Kernel Library, http://www.intel.com/software/products/mkiI

SuperLU_MT version 2.0 - Copyright © 2003, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy). All rights reserved. SuperLU Disclaimer: THIS
SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

7-zip - 7-Zip Copyright: Copyright (C) 1999-2009 Igor Pavlov. Licenses for files are:
7z.dll: GNU LGPL + unRAR restriction, All other files: GNU LGPL. 7-zip License: This library
is free software; you can redistribute it and/or modify it under the terms of the GNU

2

http://www.xs4all.nl/~kholwerd/bool.html
http://www.xs4all.nl/~kholwerd/bool.html
http://www.mozilla.org/MPL/
http://www.mozilla.org/MPL/
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
Lesser General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This library is distributed
in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details. You should have received a copy of the
GNU Lesser General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
unRAR copyright: The decompression engine for RAR archives was developed using source
code of unRAR program.All copyrights to original unRAR code are owned by Alexander
Roshal. unRAR License: The unRAR sources cannot be used to re-create the RAR
compression algorithm, which is proprietary. Distribution of modified unRAR sources in
separate form or as a part of other software is permitted, provided that it is clearly stated
in the documentation and source comments that the code may not be used to develop a
RAR (WinRAR) compatible archiver. 7-zip Availability: http://www.7-zip.org/

AMD Version 2.2 - AMD Notice: The AMD code was modified. Used by permission. AMD
copyright: AMD Version 2.2, Copyright © 2007 by Timothy A. Davis, Patrick R. Amestoy,
and Iain S. Duff. All Rights Reserved. AMD License: Your use or distribution of AMD or any
modified version of AMD implies that you agree to this License. This library is free
software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version. This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details. You should have received a copy of the GNU
Lesser General Public License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is
hereby granted to use or copy this program under the terms of the GNU LGPL, provided
that the Copyright, this License, and the Availability of the original version is retained on
all copies.User documentation of any code that uses this code or any modified version of
this code must cite the Copyright, this License, the Availability note, and "Used by
permission.” Permission to modify the code and to distribute modified code is granted,
provided the Copyright, this License, and the Availability note are retained, and a notice
that the code was modified is included. AMD Availability:
http://www.cise.ufl.edu/research/sparse/amd

UMFPACK 5.0.2 - UMFPACK Notice: The UMFPACK code was modified. Used by permission.
UMFPACK Copyright: UMFPACK Copyright © 1995-2006 by Timothy A. Davis. All Rights
Reserved. UMFPACK License: Your use or distribution of UMFPACK or any modified version
of UMFPACK implies that you agree to this License. This library is free software; you can
redistribute it and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version. This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies. User documentation of any
code that uses this code or any modified version of this code must cite the Copyright, this
License, the Availability note, and "Used by permission." Permission to modify the code
and to distribute modified code is granted, provided the Copyright, this License, and the
Availability note are retained, and a notice that the code was modified is included.
UMFPACK Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK
(including versions 2.2.1 and earlier, in FORTRAN) is available at
http://www.cise.ufl.edu/research/sparse . MA38 is available in the Harwell Subroutine
Library. This version of UMFPACK includes a modified form of COLAMD Version 2.0,
originally released on Jan. 31, 2000, also available at

3

http://www.7-zip.org/
http://www.7-zip.org/
http://www.cise.ufl.edu/research/sparse/amd
http://www.cise.ufl.edu/research/sparse/amd
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
http://www.cise.ufl.edu/research/sparse . COLAMD V2.0 is also incorporated as a built-in
function in MATLAB version 6.1, by The MathWorks, Inc. http://www.mathworks.com .
COLAMD V1.0 appears as a column-preordering in SuperLU (SuperLU is available at
http://www.netlib.org). UMFPACK v4.0 is a built-in routine in MATLAB 6.5. UMFPACK v4.3
is a built-in routine in MATLAB 7.1.

Qt Version 4.6.3 - Qt Notice: The Qt code was modified. Used by permission. Qt copyright:
Qt Version 4.6.3, Copyright (c) 2010 by Nokia Corporation. All Rights Reserved. Qt
License: Your use or distribution of Qt or any modified version of Qt implies that you agree
to this License. This library is free software; you can redistribute it and/or modify it under
the

terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version. This
library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies.User

documentation of any code that uses this code or any modified version of this code must
cite the Copyright, this License, the Availability note, and "Used by permission."
Permission to modify the code and to distribute modified code is granted, provided the
Copyright, this License, and the Availability note are retained, and a notice that the code
was modified is included. Qt Availability: http://www.gtsoftware.com/downloads Patches
Applied to Qt can be found in the installation at:
$HPEESOF_DIR/prod/licenses/thirdparty/qt/patches. You may also contact Brian
Buchanan at Agilent Inc. at brian_buchanan@agilent.com for more information.

The HISIM_HV source code, and all copyrights, trade secrets or other intellectual property
rights in and to the source code, is owned by Hiroshima University and/or STARC.

Errata The ADS product may contain references to "HP" or "HPEESOF" such as in file
names and directory names. The business entity formerly known as "HP EEsof" is now part
of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and
to maintain backward compatibility for our customers, we did not change all the names
and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to
being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,
with regard to this documentation and any information contained herein, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.
Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or of any
information contained herein. Should Agilent and the user have a separate written
agreement with warranty terms covering the material in this document that conflict with
these terms, the warranty terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license. Portions of this product include the SystemC software licensed under Open
Source terms, which are available for download at http://systemc.org/ . This software is
redistributed by Agilent. The Contributors of the SystemC software provide this software
"as is" and offer no warranty of any kind, express or implied, including without limitation
warranties or conditions or title and non-infringement, and implied warranties or
conditions merchantability and fitness for a particular purpose. Contributors shall not be
liable for any damages of any kind including without limitation direct, indirect, special,

4

http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.mathworks.com
http://www.mathworks.com
http://www.netlib.org
http://www.netlib.org
http://www.qtsoftware.com/downloads
http://www.qtsoftware.com/downloads
http://systemc.org/
http://systemc.org/

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

incidental and consequential damages, such as lost profits. Any provisions that differ from
this disclaimer are offered by Agilent only.

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical
data rights granted to the federal government include only those rights customarily
provided to end user customers. Agilent provides this customary commercial license in
Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for the Department of Defense, DFARS 252.227-7015
(Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial
Computer Software or Computer Software Documentation).

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

DRC QUICK Start e e e e e e e e e 8
DRC Message WindOWo ittt et e e e e e e e e e e e e et e e 8
DRC ENGINE . . o i it e e e e e e e e e e e e e e 9
Rule Registry File i e e 9
RUIE DireCtories . . . v vt e e e e e e e e e 10
Setting Up @ QUICK DRC o e e e e e e 10
Setting Up a DRC with Predefined Rules i e e e e e e e as 11
Viewing DRC ReSUItSo e e e e e 12
Opening a DRC Example WorkSpaceo vttt i it e et e e e e e e e e e e e 14
Setting DRC Memory Use and Performance ittt e et e e e 16

Writing Design Rules e 19
Extension and Intrusion Definitions e 19
Anatomy of a Simple DRC Rule File i e e e e e e e e 19
Layer Management i e e 20
Recognizing Devices in Flattened Layouts o i e 23
Complete DRC EXample . . . it e s et e e e e e e e e e 23
Additional DRC EXamples i e e e e 32

DRC Functions (alphabetical) e 34

DRC Functions (by category) i e e e e 37
Import and EXport Layerso ottt i e e e e e e e e e e 37
Edge Selection e 37
Edge Operations it e e e 38
Polygon Selection e e e e e e e 38
Polygon Operationso oot e e 39
DRC Job Management it i e e 39

DRC Job Managemento it i s e e e e e e e e e 40
o =T [ol U [e [ol = 40

DRC Match Functions for Error Checking e 41
Match AEL FUNCEION oo e e e e e e e e e e e 41
Complete Match AEL Function i i e e e e e e e e e e 41
Running Match AEL fuNCLiON i e e e 42

Boolean Operations on Edges i i e e e e 43
all_edges() . . . i e e e e e e e e 43
INVert_edges() . ..t e e e e 43

Conditional Selection o i e e e e e e e 46
COMPENSALE() + ¢ v i v it e e e e e e e e e e e e 46
CONEAINS() .« o v e e e 49
COrNEr_AGES() « v v v i i i e e e e e e 51
Edge Selection Based on Grid it i e e e e e 53
de_toUuCh() . . . o i e e e e e e 53
double_clearance()o i i i e e 54
dve_combing() .« . v vt e e e e e e e e e e e 56
Edge Selection Based On ClearanCe ottt it e e e e e e e 57
AVE _ArC() .« v v e e e e 58
Ave _dre _groUp() « v v i e e e e e e e e e e e e 58
AV _SEOSIZE() « v v i e e e e e e e e e e e 59
Edge Qualifiers e e 61
Edge Selection Based 0N COMMersottt it ettt e e e e e e e e 69
eXtErNAl() & v v e e e e e e e e e e 69
GAP() - v e e e e e e e e e e e e e e e 71
INEErNal() . . . o e e e 73
NESES() v v it e e e e e e e e e e e 74
NOECN() . i i e e e e e e e e 77
o) i [o o () 79
Edge Compensation it e e e e e e 80
Ssingle_clearanCe() . . . v v i it e e e e e e e e e e e 80
SPACING() « v v e e e e 83
WIAEh () . . o e e e 86

DRC Layer Management Commands v v ittt it et e e e e e e e 89

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

dve_import_text_layer() e e e e e e 89
dve_export_layer() . . oo i e e 90
dve_identify_cell_layer() e e 90
dve_import_cell_layer() . . . vt e e e e e e e e e 91
dve_importlayer() . . .o i e e e e e e e e 92
3 = Tl 1= 93
INErUSION () « . o e e e e e e e e 93
o o) o 8 =] o o ¥ () 94
Merge Operations on Polygons e 96
dve_bool_and() . . . oo e e 96
dve_bool _NOt() . . .t i e e e e e e e 97
AVe D00 _Or() « v e e e e 97
AVe _MErge() & v i it i e e e e e e e e 98
Ave_Self() . v v e e e e e e e e 99
dve_self _merge()ot e e e e e e e 99
Example for Performing Boolean Operations ittt 100
Operations for Polygon Extraction from Edges it 101
AVe _PIgoUL() . v v e e e e e e e e e e 101
dve_quadout() it e e 101
Polygon EXtraction i e e e e e e e e e e 107
dve_plg_extract() v i e e e e e e e e e 107
Polygon Selection oo e e 108
Polygon Selection Based on Intrinsic Properties i i it e 108
POIY _@r€a() v v v i e e e e e e e e e 108
POly_edge_COde() . . v v vttt e e 109
poly_hole_count() oo e 111
POlY_inter_layer() . . vt i e e e e e e 114
poly_line_length() o e 116
poly_path_count() oo e e 117
poly_path_length() e e e e 118
Polygon Selection Based on Edge Relationships 120
POly_perimeter() e e 121
Polygon Selection Based on Merge Properties it 121
Sizing Operations on PolygoNns i i it e e e e e e e e 124
AVE_OVEISIZE() & v v it i i e e e e 124
AVe_UNAErSIZE () & v v v i it i e e e e e e 125
Troubleshooting Design Rule Checker i e e e e e e e e 126
Layer Management Errors (101-199) i i e e 126
Layer Management Warnings (201-299) i e 127
Command Usage Errors (301-399) i ittt it e e e e e e e e 127
Command Usage Warnings (401-499) i i e e e e e e 129
Using Calibre DRC Linko o e e e 131
Running Calibre DRCin Local Mode i e e e e e e e e 131
Running Calibre DRC in Remote Mode i e e e e e e e 132
Viewing Calibre DRC Link Results e e e e 134
Using Assura DRC Link oo e e e e e 136
Running Assura DRC in Local Mode i i e e e e e e e e e 136
Running Assura DRC in Remote Mode i e 137
Viewing Assura DRC Link Results e e e e e 139

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

DRC Quick Start

The Design Rule Checker helps ensure that a layout design conforms to the physical
constraints required to produce it. These constraints can be a requirement of the design
itself (such as reducing noise) or a requirement of the process used to produce the design.

You can run a quick check to ensure conformance to basic design requirements, such as
minimum width and spacing, or you can run a check using custom rules to ensure that a
design meets manufacturing specifications. In either case, you can check all or part of the
design.

You can run a design rule check using links to external DRC engines. For more information
on using external DRC links, see Using Calibre DRC Link (drc) and Using Assura DRC Link
(drc).

Whether you run a quick check or a check using custom rules, the procedure is essentially
the same:

« Define or select a design rule.

e Run the design check using the defined or selected rule.
» Load the results.

« View any errors that were found.

© Note
Layout resolution must be set properly for DRC to work on designs. The layout is drawn at the
resolution specified in the Options > Preferences dialog box. DRC works at this resolution and
cannot find clearance violations below the resolution value. To have DRC check clearance rules at
lower values, change the layout resolution to a value lower than the smallest DRC rule.

DRC Message Window

The DRC Message window provides information on the status of the current Design Rule
check. The window displays as you set up and run a DRC and then displays a summary of
in the View Errors panel of the DRC or Custom DRC dialog box.

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

=] DRC Message Window:7 ﬂ

®#%% ALY Desktop DRC #+%

Job nawe: testl cell 1 dro

Fule file: C:Susersidefaultll 01%Testlay wrkiverificationirulesitestl rule.ael
Design: AddOnWithoutTech lik:cell 1:layout

Check area: Full design

Date: Thu oot 07 15:47:05 2010

Compiling rules...
1 input layer(s)
1 export layer (s)
2 ruleis)
Exporting design...
3 polygon(s)
Executing rules...

Total 0 erroris)
End timwe: Thu Ot 07 15:47:06 2010 -
Kl [

Close |

DRC Engine

In ADS, you may run a design rule check using the ADS DRC engine, or you may link to
either Calibre or Assura via the DRC Engine drop-down list. For more information on
using external DRC links, see Using Calibre DRC Link (drc) and Using Assura DRC Link
(drc).

Rule Registry File

A rule registry file, called setrule.ael, is required in a rule directory to display the list of
available rule files by file names.

The format of setrule.ael is as follows:

dve_set_rule list(list(
<rule_ name>,<rule_ file>,
<rule_name>,<rule_file>,

D)5
where <rule_name> can be a string that briefly describes the purpose of the rules and
<rule_file> is the actual file name.

For example, if you create a setrule.ael file for the Workspace directory, you can select the
Workspace Rule location to display this list of rules.

// Rule Registry File

dve_set_rule_list(list(

"Substrate Via Design Rule", "viaRule.ael",

"NiCr Thin Film Resistor Design Rule", "resistorRule.ael",
"Gate Metal Spacing Rule'", "gateSpacing.ael"

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
D)

For Calibre DRC use dve_set_calibre_rule_list() and for Assura DRC use
dve_set _assura_rule_list() in setrule.ael file.

Rule Directories

You can store a rule file in any directory and find the file using the Rule file browser. You
can click the Rule file Browse button to find a rule file in any directory. However, it is
better to use one of the four rule directories supported by the program to facilitate rule
file browsing.

The pre-defined rule directories for storing custom rules are: Site, User, Workspace and
any installed design kit. The Rule Location drop-down menu corresponding to these
directories is available in the dialog box. Design rules can be placed at any of these
locations.

EDesign Rule Check 21|
DR.C Engine IP-DS "'I Settings
—Rules list
Rule location: IWorkspace j

Rule File

T kestl rule.ael

Rule File ILa\,r'_wrk'l,\-'erificatian'l,rules'l,test1_ru|e.ae| Browse, ., |

Create Width/3pacing Rule...

—Check area

* Full design

" Current window view

Job name |test1_ce||_1_drc

Run Zancel Help

Setting Up a Quick DRC

You can use a quick DRC to check selected components or to check an entire design
against basic design requirements. After you provide the information needed, the program
writes a design rule for you that you can save and reuse again.

To set up a quick DRC:

1. In the Layout window, create a new layout or open an existing one.

2. From the menu, choose Tools > DRC to open the Designh Rule Check dialog box.

3. Click the Create Width/Spacing Rule button to define a basic design rule to be
used. The Create Width/Spacing Rule dialog box appears.

10

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Etreate Width/spacing Rule

Rule location

Rule name I

Rule Filename ¢, ael) I

—Wwidthispacing rule

[V Minimurn width I

[v Mlinimur spacing I

Apply ko laver{s): Select All I Deselect.ﬂlll

default:drawing ﬂ
cond: drawing

condZ: drawing

resi;drawing

digl:drawing

dielz;drawing

hole: drawing

bond:drawing j

Save | Cancel | Help |

4. Select the Rule location from the drop-down list and then enter an appropriate Rule
name and Rule filename.
5. Select the parameter(s) you want to check and enter a value in the selected field. Do
not include units when you enter a value in this panel.
e Minimum Width defines the narrowest allowable value in the design.
« Minimum Spacing defines the narrowest allowable spacing between shapes in
the design.

© Note
Design Rule Checker will run most efficiently if reasonable values are set for Minimum Width
and Minimum Spacing. Values that are much larger than the actual design will create longer
processing times.

6. In the Apply to Layer(s) list, select the design layer(s) you want checked.
o Apply to Layer(s) displays a list of the layers in the current design. Choose the
layers that you want the rule to apply to.

7. Click Save to save the Width/Spacing Rules and dismiss the Create Width/Spacing
Rule dialog box.
When you save a Design Rule, the program automatically updates the rule registry
file to include the new rule (see Rule Registry File).

8. Click Run in the Design Rule Check dialog box to start the process.

Setting Up a DRC with Predefined Rules

Typically you use a DRC with predefined rules to check a design against a manufacturing
specification. A DRC with predefined rules differs from a quick DRC in two major ways:

e You specify a custom design rule.
e You must create a DRC layer in the design on which to display error segments.

To set up a DRC with predefined rules:

1. In the Layout window, open an existing layout or create a new one.
2. Choose Options > Layers. If the designh does not have a drc layer, create one. Refer
to Layer Management (drc) for more information.
3. Choose Tools > DRC to open the Design Rule Check dialog box.
4. Define the Rules using the Rules list section of the dialog.
11

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

» The Rule location enables you to select a DRC rules file from one of several
predefined locations: Site, User, Workspace, or a design Kkit.

« The Rule Name list box includes a list of available rule files and their associated
AEL file name. You can select one of these files by simply clicking the file name.

« The Rule file field displays the selected rules file.

« The Browse button enables you to display the Open DRC Rules File dialog box
where you can select a rules file from other locations, open the file, and
view/edit the contents.

o The Create Width/Spacing Rule button launches the Create Width/Spacing
Rule dialog box which enables you to define a new rule. For details, see Setting
Up a Quick DRC.

5. Choose Site, User, Workspace, or a design kit to view predefined rules for that
location (see Rule Registry File). If more than one design kit is enabled, each design
kit will be listed in the Rule location list box.

6. Select a Rule Name from the Rules List. If the rule file you want is not in the rule
registry for a pre-defined location, you can browse to find it or you can enter the
path and rule file name in the Rule File field.

7. Select the Check area for Full design or Current window view.

o Full design - Check the entire layout.

o Current window view - Check only the area that is currently visible in the

Layout window.

@ Hint
You can save time on large designs by checking only the area of concern.

8. You can accept the default Job name or enter a different name. The default Job name
is the design name with the suffix _drc.

9. Click Run to compile the selected rule and start the process. The DRC Message
window appears.

A message similar to the example displays in the message window:

Run DRC Job _drc for full design...
DRC process complete

Viewing DRC Results

After a DRC job completes successfully, the DRC Results Viewer dialog box will
automatically appear.

12

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

=/ DRC Results Yiewer

He & & &
Design |auto_drc_lib:drc_tesk:layvout w
Job name |auto_drec_lib_drc_test I

Current Fixed

Efrar x i
width of layer cond must be »= 3,00 -43,500 4,500
'width of laver cond must be == 3.00 -46,500 2,500

[] auko zoom [Auto seleck

Design rule: Chusersidefaultihpeesofidroiruleswidthrulez, ael
Mumber of errors: 2

If there are any DRC errors, each of the errors will be listed with an associated error ID
number. You can select an error from the list to display the error in the Layout window. If
there are no errors found, the list will be empty and the error count will be zero.

© Note
For a quick DRC, the program automatically creates a drc layer on which error segments are displayed.
For a DRC with predefined rules, the program does not create a drc layer automatically. You must create
an appropriate drc layer(s) before you run the check. For more information refer to Layer Management
(drc).

Because the DRC job is automatically saved to disk, you can review the DRC results at a
later time.

To access and view results (if it has not already been opened by a DRC job):

1. Choose Tools > DRC Results Viewer. The results viewer is displayed.
2. In the Design drop-down list, select the design you want to view. Only designs in
open windows are shown in the list.
3. In the Job name drop-down list, select the job name you want to view.
4. Select an error to view from the list. The error will be highlighted in the layout
window.
5. Enable Auto Select and/or Auto Zoom as desired.
« Auto Zoom - Shifts the design in the layout window to center the error.
« Auto Select - Selects the error in the layout window. The error segments are
selected so you can delete the DRC segments as you fix problems in the layout.
6. The Design rule file and the error count are all displayed at the bottom of the DRC
Results Viewer dialog box.

To view specific error types:

1. In the Layout window, choose Options > Preferences > Select.

2. Turn off all Select Filters except the specific error type you want to view (for
example, Polylines).

3. Click Select by Cursor and experiment with selecting errors by dragging a select
box around areas in the layout where errors are indicated.

4. Click OK to dismiss the message window, Cancel to dismiss the dialog box.

13

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
To sort errors in the DRC Results Viewer:
Click on a field (i.e. ID, Error, X, or Y) in the header bar of the list. By clicking on one of

these fields, the errors will be sorted based on the field clicked. For example, clicking the X
will sort the errors based on the X location.

D Errar " ¥ S
13 Metal 0 Inclusion in Gate Metal minis 1 um -19.000% 200,000
19 Metal 0 Inclusion in Gate Metal minis 1 um -19,000 © 120,000
44 Metal 0 Inclusion in Gate Metal minis 1 um -19.000 -120.000
46 Metal 0 Inclusion in Gate Metal minis 1 um -19.000 -200.000
20 Metal 0 Inclusion in Gate Metal minis 1 um 20,000 101,000
21 tetal 0 Inclusion in Gate Metal minis 1 um 20,000 219.000 o

To reverse the sort order, click the field again.

© Note
The X,Y location in the error list is just one of the points included in the error. This X,Y location is helpful
in locating an error in a large design.

Opening a DRC Example Workspace
The Advanced Desigh System examples directory contains many DRC examples. Examples
are constantly improved and new ones are added, so the files in your program may differ
from what is shown here.

To open a DRC example workspace:

1. In the Main window, choose File > Open > Example...
2. In the DRC Example dialog box, select MW_Ckts folder.

Choose an Archived Example to open @
Look in: |_) examples j |‘=_“F v
() 1HEY CGEsmM) TDSCOMA
() Antennas-Prop [CIHSDPA () Timed
Recent) BehavioralModels [CIHsUPA () Training
C)COMA () Instruments () Tutorial
?‘[‘ [C)CoMAZK 3K _Examples CIuME
CICMME [CILTE CIUwE
Desktop [hCUm_Sys BMumentum [ﬁ'v'erilog-.ﬁ.
. () Connected_Solutions [EGHme 1 [C)verilog-ams
.——/'») Designkic [C)PtolemyDocExamples ([C3)WCDMASS
Mo D t (L) Desiankits [CHRF_Board [CWLAN
Y Locuments
ChDsP [CHRF_s1P [CIWLAN_L1M
[CHDTME [CARFIC CwWMAaN
iﬁ_ﬂ 0T [50FHAICasim [CWMAN_M
My Computer [CEDGE [Chsignalinterity
[CHFEM [5vstemC_Cosim

=
ty Metwark. File name: | j Open |
Flaces
ﬂ Cancel

Filez aof type: *Tzap

3. Click Open.
4. In the Choose an Archived Example to Open dialog box, select the drc_via_wrk.7zap

14

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
archived example.

Choose an Archived Example toopen @
Look jn: | () Muw'_Ckts ~ e ® sk E-

Design ManuFacturing_MMIC_wrk, 7zap
LargeSighmp_wrk. 7zap
LMA_1GHz_wrk. 7zap

LMA_wirk. 7zap

Desktop MMIC_AmpEM_Sims_wrk, 7zap

. i _filker _wrk, 7zap

--__} WINMAK_PA_Werification_wrk,7zap

__IJ amodelB_wrk, 7zap
Recent

Files of type:

by M etwark, File name: |dlc_via_w1k.?2a|:| ﬂ Open |
Places
ﬂ Cancel

¥ 7zap

5. Click Open.
6. In the Choose a directory to install the example in dialog box, select the directory
(for example, DRC Example) where the DRC example must be unarchived.

© Note
If you are running ADS on network, you must have the write permission to install or unarchive the
workspace.

iz Choose a directory to install the example in

Look in: |[ﬁc:'l,users'l,default v| Q9002 |E] B

;i_! My Camputer | | () DOR2vADSZ009UR. 1.0_wrk
- |5 designguide_Files

| jyotsnas [EncoderExample_vrk
..rJ Deskkop [hpeesof

L3 Mywarkspace_wrk

__._J My Documenty| | = np1e_Example

|5 Passivecircuit_wrk

[C3) signal Inkegrity

[smithchart_wrk

I3 studio_files

[C2) untitled_prj

[T WLAN_8021 La_ESEe_wrk

@ DR Example

< I
Direckary: | | [Choose l
Files of type: |Directnries | [Cancel l

7. Click Choose.
8. In the Open Workspace window, click Yes to open the drc_via_wrk workspace, else
click No.

15

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

& Open Workspace

9 The warkspace C:lusersidefault\DRC Exampleldrc_via_wrk was successfully unarchived.

_ﬁ
Wiould you like to open the workspace now?

After you click Yes, the drc_via_wrk example workspace opens in the selected directory.

Setting DRC Memory Use and Performance

To set the parameters that tune DRC's memory usage and performance, choose Options
> Preferences in the Layout window and select the Verification tab.

verification

Memory Management

Real Memory |32 ME
Skorage per Area (2.5 bytes
Epsilan 0.0s
Fringe 15
Bin wwidth 20

[] sart GEM layers

Memory Management
The Memory Management area contains two fields:

+ Real Memory is the real memory that DRC is allowed to use (in Mbyte). Adjust this
value to a suitable value (for example, 250Mb) to avoid repeated memory
allocations.

« Storage per Area is the amount of memory needed per unit area (in layout units).
To enable a large design to be checked on a small machine, a design can be broken
down into a list of smaller check regions called "facets". Using both Real Memory and
Storage per Area factors, DRC decides whether the design fits in a single check
region, or whether it requires a large number of smaller check regions:
Maximum_check_area=real_memory_in_bytes/storage_per_area
You can usually specify a value of 2500 bytes in the Storage per Area field.

16

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
Epsilon

Epsilon is the offset to the clearance rule in DRC operation, to compensate for arithmetic
rounding errors. Note this is in database units, not layout units. For example, for a 5
micron minimum spacing rule, this ensures that the edges, which are exactly 5 microns
apart, will not be pulled in as an error.

For Example:

If single_clearance (lyrCond) < 3.0 rule accidentally pulls in sections of edges which are
exactly 3 units away due to rounding errors, in this case, epsilon REDUCES the clearance
tested by a microscopic amount, so that it misses the offending edge.

Fringe

The fringe is used when the design must be broken down into facets due to memory
constraints. In that case, the fringe value specifies to the program how facets must be
expanded to catch errors that occur close to their borders.

The fringe is also used to define the upper bound value in 2-layer clearance tests with a
GT or GE operator. For 1-layer clearance tests, it is recommended to specify a
DVE_RN_UPPER_BOUND qualifier (refer to DVE_RN_UPPER_BOUND (drc) for more
information).

The fringe is specified in layout units.

A fringe checking routine has been added to the rules compiler. It ensures that the fringe
value is set internally to a value larger than the biggest rule or sizing operation. For
example, the internal fringe for a width clearance rule is set at 2 times the width value. A
message is provided if the fringe is set internally to a value larger than the value specified
by the user:

Start rule compilation phase 1 ...

Using fringe value from largest rule: 359.800
Start rule compilation phase 2 ...

Rule compilation complete

The DRC engine checks errors between edges that are inside the facet and edges that are
just outside the facet in the following way:
The border of the facet is called the "check zone".

FHESHE AR S == Ccheck zone

	-->7<—-	
-->7<—-		
	--> 7<=	

R e R dR 3k R

s R R

The DRC engine "bloats" the facet (the check zone) by the size of the fringe value. This
forms a "rule zone" around the selected check zone.

17

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
@EEEEERAREAEEAMEERRAREEEEEERAREACERMERRRRAEEEERM

(@ @ <== ruleE zone
[@ [@

@ FHEFHAF S A SRS S F RS <========= check zone
@ # # @

[@ # e * # Fem [l

@ # | |-=>¥<-—| @ |

@ # | |--»B<--| @ |

@ # | |-=-»8<--] @ |

@ # b * # ﬂ'__@__ﬂ' Lo

@ # # @ | NO

@ FHEFSS A S SRR R R S (@ I

@ Fo_[@-—* y

@ | @ |
AEEAEEEAEEAEAEEAEAEEEEEEEEAEEEAEEEAEEAEEAEEEEAEEREE |

The program sends to the DRC engine all of the polygons that fall within the rule zone. It
is called the "rule zone", because rules will be checked inside this zone.

Bin Width

The Bin width is used to tune the performance of DRC operation. Each check region is
divided into bins by the sorting grid of this width. The performance of the check depends
on the number of vertices and edges loaded in each bin. Too many empty bins, or too
many vertices and edges in each bin will degrade the performance. This is specified in
layout units.

Sort GEM Layers

This option is used to specify whether the work files must be sorted by layer. It is
recommended to set this option when there are 3 or more layers. It is more efficient to
clear the option when there are only 1 or 2 layers.

18

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Writing Design Rules

This section provides information for writing design rules. Design verification rules
produce:

» graphical data showing the location of each violation
e an error message showing the nature of the violation.

A complete DRC example is included in this section. For detailed information on specific
commands, see the command reference sections.

Extension and Intrusion Definitions

The terms, Extension and Intrusion, used in creating design rules, are defined in the
following illustration.

Feature A
Feature B
Extension Extension of Intrusion of | Extension of
Feature A, Feature B | Feature B
and ,
Intrusi frarm intao I from
ntrusion Feature B Feature A | Feature A
Exclusion between
Exclusion Feature A and
Feature C
Feature C
Inclusion of
Inclusion Feature D
weithin
Feature C

Anatomy of a Simple DRC Rule File

A DRC rule file is written in Application Extension Language (AEL). The illustration shows a
simple DRC rule file. Typically, a rule file consists of a Layer section and a Rule section.
The Layer section declares all the design layers used or checked and all the output DRC
layers for displaying errors. The Rule section consists of rule checking statements.

19

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

// ael rule file: subvia.ael
// Purpoze: To check Via to Via spacing rule

/7 declare input dezign layers —
decl backVia = dve_import_laver (20);
// declare cutput layer Layer Section

decl lyrDRCError = dve_export_layver (101);

H
// Bubstrate Via Spacing Design Rules
/4 Rule B - Substrate Via to Via minimum spacing 150 um

A

lyrDrcError += dve_dreigap (backvia) < 150,
"Substrate via edge to wia edge min. iz 150 um"
17

© Note
A comment starts with a // or is enclosed by /* and */ .

Layer Management

Rule Section

The rules file illustrated in this section analyzes data on the physical design layer cond.
The width command checks the inside clearance distance between edges of the same
polygon. Edges that are less than 3.0 layout units apart are exported as line segments to
design layer ads_drc_error. Each violation has an associated error message: width less

than 3.0.

The AEL variable lyrCond references an import layer and the AEL variable drcError

references an export layer.

20

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

[=| DRC Results Viewer [Z| |E|r5__(|
He & & &

Design |autn_dru:_lib:drc_test:laynut v|
Job name |autn_drc_lib_drc_test v|

Current | Fixed

Efrar x i
swidth of layer cond must be == 3,00 -43,500 4,500
'width of laver cond must be == 3.00 -46,500 2,500

[] auko zoom [Auto seleck

Design rule: Chusersidefaultihpeesofidroiruleswidthrulez, ael
Mumber of errors: 2

Import Layers
When performing a design rule check, you must specify the design layers you want
checked for design violations. Design layers from your layout design are imported into the
verification process using the command dve_import_layer .
You can specify an import layer by using a layer name or a layer number:
decl lyrCond = dve_import_layer ("cond");
or
decl lyrCond = dve_import_layer (1);
Import layers can be used only as input to a DRC command. An import layer must be an

existing Physical design layer and can only be used for import (that is, it cannot appear
again on the left-hand side of a rule command).

21

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Name Number Process Role Binding 2
cond 1 Conduckar | cond

cond2 2 Conduckar % | cond2

resi 3 Semiconductor “

diel 4 Dielectric W

diel2 1z Dielectric A4

hiole 5 Conductar Yia % | cond cond2 M
bond & Conduckar “

symbol 7 Mot defined W

ket g Mot defined A4

leads 9 Mok defined b

packages 10 Mk defined w

ports 11 Mot defined W

bound 13 Mot defined A4

silk_screen 14 Mok defined “

silk_screenz 31 Mk defined w

rase_dimensior 15 Bk deFined ~ bt

Add] [Remave

Export Layers

Data is exported back to the layout editor by sending the output of the dve_drc command
to an export layer. You create export layers using the command dve_export_layer .

You can specify an export layer by using a layer name or a layer humber:

decl drcError = dve_export_layer (" ads_drc_error ");

or

decl drcError = dve_export_layer (101);

An export layer must be an existing DRC design layer. The Design Rule Checker will not
display DRC errors on a Physical layer.

When sending a DRC error to an export layer, the += assignment is used to signify that
you are performing an append operation. Export layers are always empty at the beginning
of each DRC invocation, so it is safe to use the += append assignment when sending data
to an export layer.

Export layers cannot be used as input to a DRC command. Export layers can appear only
on the left-hand side of a rule command.

Work Layers
22

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Work layers are used to reference intermediate data generated by a rule command. Work
layers exist only temporarily while the DRC process is running, and are not part of the
layout editor environment.

Use work layers when it is necessary to filter or process data on an import layer before
generating a DRC error.

As good practice, you should always initialize a work layer to NULL .

Rules File Layers Example

This rules file example analyzes physical design data on layers cond and cond2. New
polygons are created that represent the area where polygons on layer cond overlap
polygons on layer cond2. The new polygons are placed in a work layer lyrPolyOverlap.

The all_edges command identifies the entire polygon as an error and the data is exported
to DRC layer ads_drc_error.

decl lyrCond = dve_import_layer ("cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error");
decl lyrPolyOverlap = NULL;

lyrPolyOverlap = dve_bool_and (lyrCond, lyrCond2);
drcError += dve_drc (all_edges (lyrPolyOverlap),
"Conductive metal cond overlaps cond2");

Recognizing Devices in Flattened Layouts

ADS Release 2009 includes two new functions, dve_identify_cell_layer() (drc) and
de_touch() (ael), that allow the DRC engine to recognize devices in flattened layouts. You
can now write rules/commands for identifying the device/cell prior to running DRC rules
and use the output layers of device recognition in the DRC engine for writing DRC rules.
The dve_identify_cell_layer() command processes the design layers prior to input into
DRC engine. It uses an associated AEL callback for the customization during the
identification steps. The AEL command de_touch () implements the touch-based device
recognition rules.

Complete DRC Example

The example in this section illustrates writing design rules for Substrate Vias and NiCr Thin
Film Resistors and manufacturing rules for Gate Metal. The example covers most of the
functionalities and features of the DRC commands.

© Note
The DRC file used in this example is included in the drc_via_wrk directory of the program's examples
directory. For information on accessing the examples directory, see Viewing DRC Examples. (drc)

To set up a DRC check, you must define the design layers and the error layers. For
information on setting up a DRC, refer to Defining the Design Layers and Defining the

Error Layers.

The following table shows the layer definitions for the process used in this example.

23

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Mask Level Layer Description

Alignment Key 13 Defines fields in which alignment artifacts will be etched.

N+ Implant 2 Mask during alignment artifact etch, Implant mask for N+ regions.
D- Implant 1 Implant mask for DFET channels, Half DFET Diodes, D- Resistors.
NiCr 3 Liftoff layer for NiCr Resistors

Ohmic 5 Liftoff layer for ohmic contact on GaAs devices.

Isolation Implant |6 Implant mask for Isolation Implant

Gate Metal 7 Liftoff layer Schottky Gate/Anode contact on GaAs devices.

Metal 0 9 Liftoff layer for Metal 0

MIM 23 Liftoff layer for MIM metal

Via 1 14 First via etch layer

Metal 1 15 First plated Au metal layer. Labels are done in this layer

Air Bridge Post 10 Support Posts for Air Bridge and Via to Metall

Air Bridge 11 Second plated Au metal layer

Passivation Via 12 Opens vias over bond pads and saw streets

Backside Via 20 Via holes (Via Option Only)

Backside Via 21 Prevent solder wetting in vias (Via Option Only)

Coat

Defining the Design Layers

The rule section declares these imported design layers:

// declare input design layers

decl nImplant = dve_import_layer(2);
decl dImplant = dve_import_layer(1);
decl niCr = dve_import_layer(3);

decl ohmic = dve_import_layer(5);

decl isoImplant = dve_import_layer(6);
decl gateMetal = dve_import_layer(7);
decl metalO = dve_import_layer(9);

decl mIM = dve_import_layer(23);

decl vial = dve_import_layer(14);

decl metall = dve_import_layer(15);1}}
decl airBridgePost = dve_import_layer(10);
decl airBridge = dve_import_layer(11);
decl passVia = dve_import_layer(12);
decl backVia = dve_import_layer(20);
decl backViaCoat = dve_import_layer(21);

Although every layer is declared here, you do not need to declare a design layer if you will

not be checking it. This example does not use all of these layers, because you are not
checking the complete design.

Defining the Error Layers

After defining the design layers, declare three DRC error layers to display errors from a

set of rules. When writing DRC rules, you decide how many DRC error layers are needed

to best view the results of a check.

// declare some DRC error layers

decl viaError = dve_export_layer(107); // for substrate via design rule
decl niCrError = dve_export_layer(103); // for thin film resistor rule
decl gateMetalError = dve_export_layer(120); // for gate metal rule

24

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

© Note
DRC error message strings: () and _ are supported, but * ' are not supported.

Checking the Clearance Rules
DRC checks clearance rules by selecting the edges that violate the clearance constraints
and sending these to a DRC error layer. Clearance rules can be checked from either inside
or outside of an edge to another edge of polygons.
The types of clearance rules are:

« width

e spacing

» external

e contains

e nests

e internal

Of these, the simplest rule is width.

width

The width command is used to check the width of polygons on a given layer. The
command checks the distance from the inside of one edge to the inside of another edge of
the same polygon.

Backside Via (layer 20) —

/{ate Metal {layer 1)

Item Description Minimum (um)
A Coded Substrate Via Feature, Square (layer 20) |30
B Substrate Via Target (layer 7) 120

Width rules for the substrate via are written as follows:

// Rule A: substrate via feature minimum 30 um

viaError += dve_drc(width(backVia) < 30, "Substrate via feature size < 30");
// Rule B: Substrate Via target size minimum 120 um

viaError += dve drc(width(gateMetal) < 120, "Substrate via Target size < 120");

25

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
spacing

The spacing command is used to check spacing constraints on a given layer. The
command checks the distance from the outside of an edge to the outside of another edge.

Item Description Minimum (um)
C Substrate Via (layer 20) to Via (20), Edge to 150

Edge

//

// Substrate Via Spacing Design Rule

// Rule C - Substrate Via to Via minimum spacing 150 um
//

viaError += dve_drc(spacing(backVia) < 150,

"Substrate via edge to via edge min. is 150 um");

Two other simple spacing rule commands are notch and gap. The notch command checks
the spacing within the same polygon and the gap command checks the spacing between
two different polygons. The spacing command checks both cases.

Checking Clearance Between Layers

All the clearance commands mentioned to this point work only on polygons that are on the
same layer. Next you will see clearance commands that check the clearance from one
layer to another. The layers checked can be a design or work layer, so you can send a
design layer to a work layer and perform a two-layer rule command with the original
design layer. An example of this capability is shown in the Using Rule Conjunction.

external

The external command checks the external spacing between polygons on two different
layers.

Backzide ia (layer 200

Iz, Implant (layer)

26

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Item Description Minimum(um)
D Substrate Via (layer 20) to Active Device Edge (layer 6) |90

//

// Rule D - Substrate Via to Iso. Implant minimum spacing 90 um

//
viaError += dve_drc(external(backVia, isoImplant) < 90,

"Substrate via edge to Iso. Implant Edge min. is 90 um");

contains

The contains command is used to check the inclusion of one polygon within another
polygon. The command checks the distance from the inside edge of polygons on the first

layer to the outside edge of polygons on the second layer.

_p.E

Gate Metal
Item Description Minimum(um)
E Metal O (layer 9) Inclusion in Gate Metal (layer 1.0
7)
//

// Rule E - Metal 0 Inclusion in Gate Metal min is 1 um
gateMetalError += dve_drc(contains(gateMetal, metall) < 1,
"Metal 0 Inclusion in Gate Metal min is 1 um");

You can use the contains command to check the extension of one polygon outside another
polygon on a different layer. The illustration uses this design rule on NiCr Thin Film

Resistors.
- Metal 0~

MiC

Item Description Minimum(um)

F Metal O (layer 9) Extension from NiCr (layer 0.5
3)

// Rule F - Metal 0 Extension from NiCr min is 0.5 um

//

niCrError += dve_drc(contains(metall, niCr) < 0.5,

"Metal 0 Extension from NiCr min is 0.5 um", DVE_RN_EDGE_ANGLES,

27

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
DVE_RV_PARALLEL);

nests

The nests command checks the distance from the outside edge of polygons on the first
layer to the inside edge of polygons on the second layer. It is exactly the same command
as the contains command except the two layer arguments are switched.

The example writes the previous extension rule (Rule F) using the nests command.

// Rule F - Metal 0 Extension from NiCr min is 0.5 um
//

niCrError += dve_drc(nests(niCr, metall) < 0.5,
"Metal 0 Extension from NiCr min is 0.5 um",
DVE_RN_EDGE_ANGLES, DVE_RV_PARALLEL);

Notice that a qualifier was used in Rule F. A qualifier is defined as a name-and-value-pair:
Qualifier_Name, Qualifier_Value

Clearance Rule Qualifiers filter in (or out) tests between pairs of edges for a rule step. If
no qualifier is specified, a rule command normally checks all the edge pairs. However, in
this example, we are interested only in the edge pairs that are parallel to each other.
Without the Parallel qualifier, we would get an unpleasant surprise from errors caused by
non-parallel edges as shown in the following figure. Remember, contains checks from
outside of the first polygon (on NiCr) to the inside of the second polygon (on Metal 0).

Metal O

I " Mick ‘/'

L |_Ern:ur in wehich we are not interested
Errar that should be checked

A width command appears to work well without a qualifier. What happens to the adjacent
edges? Actually, the width command has a default qualifier to filter out all the adjacent
edges during the rule operation:

DVE_RN_SEPARATE, DVE_RV_SEPARATE

Nearly all clearance commands have some type of default qualifiers to tell how the rule
works. An example would be the Polarity qualifier. The fact that a command checks from
the inside (or outside) of an edge to the inside (or outside) of another edge is dictated by
the Polarity qualifier.

Two generic clearance commands (single_clearance and double_clearance) demand a
polarity qualifier to tell them what to check. The single_clearance command is equivalent
to a width command:

dve_drc(single_clearance(layer) < distance,
DVE_RN_POLARITY, DVE_RV_INSIDE);

The double clearance command is equivalent to a contains command:
28

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

dve_drc(double_clearance(layerl, layer2) < distance,
DVE_RN_POLARITY_FROM, DVE_RV_INSIDE,
DVE_RN_POLARITY_TO, DVE_RV_OUTSIDE);

internal

This internal command checks the distance from the inside edge of one polygon to the
inside edge of another polygon. The command is used to check the intrusion from one
polygon into another polygon.

e WetdD

Item Description Minimum(um)
G NiCr (layer 3) Intrusion into Metal 0 (layer 9) 2.5

//

// NiCr Thin Film Design Rules

// Rule G - NiCr Intrusion into Metal0 min is 2.5 um
//

niCrError += dve_drc(internal(niCr, metall) < 2.5,
"NiCr Intrusion into Metal0 min is 2.5 um");

Selecting Polygons

Several polygon selection commands are provided. In this example, only the
poly_path_length and poly_inter_layer commands are described, but all polygon selection
commands work similarly. For more details, see Conditional Selection (drc).

poly_path_length

The command poly_path_length selects polygons based on the path length property of
overlapping polygons on two layers.

e et

Micr

29

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
Item Description Minimum(um)
H Resistor (layer 3) Width 2.0
K Resistor (layer 3) Length 3.0
To check the width of a Thin Film Resistor, first do a boolean merge-NOT between the NiCr
and Metal 0 layers to produce the resistor polygons. The path consisting of Bottom Inside

Top (BIT) edges is the width of the resistor (see the illustration). Then select the bad
resistors by checking the Bottom Inside Top (BIT) path length.

For details on determining the path code from merged polygons, refer to Polygon
Selection Based on Merge Properties. (drc)

In this rule example, you begin to use work layers. Also, the result of a poly_path_length
command is a polygon layer, so you need an all_edges command to send the polygon
layer to a DRC error layer for displaying.

Bottom Inzide Top (BIT) Path

Top: MiCr
Bottom; Metal O

Bettam

Top MOT Bottom

// declare some work layers

decl lyrResistor, widthShort;

//

// NiCr Thin Film Design Rules

// Rule H - Resistor width min is 2um

//

// To produce the resistor polygons

lyrResistor = dve_bool_not(niCr, metall);

// Select if the BIT path length is less than 2
widthShort = dve_drc(poly_path_length(lyrResistor) < 2,
DVE_RN_PATH_CODE, DVE_RV_BIT, // set path code
DVE_RN_PATH_LENGTH, DVE_RV_MIN_PATH // check minimum
D

// Attach error message & send error polygons to DRC error layer
niCrError += dve_drc(all_edges(widthShort),

"NiCr Thin Film Resistor min width 2.0 um"

)3

The Rule K checks the length dimension of a resistor. It does not require a
poly_path_length command, you can implement this rule by using a boolean command
and a clearance command. Try this as an exercise.

poly_inter_layer

The command poly_inter_layer selects a polygon based on its relationship to another
polygon. The command is very useful for selecting a subset of polygons out of a polygon
layer and then performing a rule check on the subset.

Item Description Minimum(um)

E Metal O (layer 9) Inclusion in Gate Metal (layer 1.0
7)

30

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
Go back to rule E , which was done previously without filtering out unwanted polygons
before applying the clearance command. This rule catches many errors that occur outside
of substrate vias because both the Metal 0 and Gate Metal layers are used in the
construction of other devices (such as DFET). The clearance rule brings in all of the
polygons from these two layers, including the polygons used for DFET.

—mDBackside Via (layer 20)

Gate Metal

Fortunately, you can tell when a Metal 0 or a Gate Metal polygon is used for a substrate
via: it must enclose a polygon from the Backside Via layer (layer 20), as shown on the
illustration. The poly_inter_layer command is used to select polygons like this. Here is the
rewritten Rule E:

//

// Substrate Via Spacing Design Rules

// Rule E - Metal 0 Inclusion in Gate Metal min is 1 um

//

// declare some work layers

decl viaGateMetal,viaMetalO; // these are work layers,

// that do not map to a real

// process layer

//

// First, derive gate metal used for substrate vias by using
// only the gate metal that encloses the backside via layer
//

viaGateMetal = dve_drc(poly_inter_layer(gateMetal, backVia),
DVE_RN_INTER_CODE, DVE_RV_ENCLOSE_ONLY);

//

// In a similar way, derive the metalO used for substrate vias
//

viaMetalO = dve_drc(poly_inter_layer(metalO, backVia),
DVE_RN_INTER_CODE, DVE_RV_ENCLOSE_ONLY);

//

// Use contains cmnd to check Inclusion between 2 work layers
//

viaError += dve_drc(contains(viaGateMetal, viaMetalO) < 1,
"Metal 0 Inclusion in Gate Metal min is 1 um");

You can use the poly_inter_layer to detect whether two polygon layers overlap in a wrong
manner. The command selects polygons by filtering in or out the overlapping conditions,
such as Inside, Outside, Touch, and Cut, and then sends the polygons through an
all_edges command to a DRC error layer. For more details, see poly_inter_layer(). (drc)

Using Rule Conjunction

In general, the result of deriving a work layer from one rule command and later feeding
that work layer to another rule command is the combining of more than one rule
constraint. This is called rule conjunction. In fact, you have seen rule conjunction in earlier
examples of polygon selection commands. Here a more complicated example shows how

31

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
to use rule conjunction to check Gate Metal manufacturing rules.

Item Description Minimum (um)
L Gate Metal (layer 7) spacing when width < 1.5/1.0

// declare output layer

decl gateMetalError = dve_export_layer(120);

//

// Gate Metal spacing Rule

// Rule L - Min. spacing is

// 1.0 if width < 1.5

// 1.5 if 1.5 <= width < 2.0

// 2.0 if 2.0 <= width < 3.0

// 3.0 if width >= 3.0

// declare some work layers

decl gatMetl15Lt, gatMetl5Ge, gatMet20Lt, gatMet20Ge;

decl gatMet30Lt, gatMet30GCe;

// Rule: Min. spacing is 1.0 if width < 1.5

// 1. select the edges with width < 1.5 from gateMetal, save in
// gatMet15Lt

// 2. select the edges with spacing error by checking the distance
// between gateMetal and gatMet15Lt

gatMet15Lt = dve_drc(width(gateMetal) < 1.5);

gateMetalError += dve_drc(external(gateMetal, gatMetl5Lt) < 1.0,
"Gate Metal min spacing 1.0um when its width < 1.5um");

// Rule: Min. spacing is 1.5 if 1.5 <= width < 2.0

// 1. select the edges with width >= 1.5 from gateMetal, save in
// gatMetl15Ge

// 2. select the edges with width < 2.0 from gatMetl15Ge, save in
// fateMet20Lt

// 3. select the edges with spacing error by checking the distance
// between gateMetal and gatMet20Lt

gatMet15Ge = dve_drc(width(gateMetal) >= 1.5);

gatMet20Lt = dve_drc(width(gatMetl15Ge) < 2.0);

gateMetalError += dve_drc(external(gateMetal, gatMet20Lt) < 1.5,
"Gate Metal min spacing 1.5um when its width within [1.5, 2)");
// Rule: Min. spacing is 2.0 if 2.0 <= width < 3.0

gatMet20Ge = dve_drc(width(gateMetal) >= 2.0);

gatMet30Lt = dve drc(width(gatMet20CGe) < 3.0);

gateMetalError += dve_drc(external(gateMetal, gatMet30Lt) < 2.0,
"Gate Metal min spacing 2.0um when its width within [2.0, 3)");
// Rule: Min. spacing is 3.0 if width >= 3.0

gatMet30Ge = dve_drc(width(gateMetal) >= 3.0);

gateMetalError += dve_drc(external(gateMetal, gatMet30Ge) < 3.0,
"Gate Metal min spacing 3.0um when its width > 3.0 um");

Congratulations. You have finished writing your first rule file. If you would like to save it to
a file, remember to use the file extension .ael. For details, see Saving a DRC Rule. (drc)

Additional DRC Examples

In addition to writing rules and checking for design errors, more complex tasks can be
accomplished by means of additional AEL coding. The functionalities of AEL can be
leveraged to develop highly customizable DRC solutions. The example below illustrates
how to combine multiple DRC jobs together for a given design and then run all the jobs at
once without further intervention.

Combining Multiple DRC Jobs Using AEL

The dedrc_run_drc_ex command enables combining multiple jobs. Consider the case
below, where in multiple jobs for different rule sets viz,. resistors, capacitors and other
design rules, are to be combined in a single AEL script.

defun drc_run(sFileName)

32

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

// Get the currently active window
decl winInst = api_get_current_window();

// Check that the design loaded in the current window is valid and is a layout
decl context = de_get current_design_context();
if(context == NULL || (!de_is_layout_context(context)))
return;

// DRC Job name
decl drcJdobName = strcat(db_get_cell name(context),"_drc");
// Run the job for rules
dedrc_run_drc_ex(winInst,sFilename,drcJdobName,FALSE,FALSE);
// Unselect all items
de_deselect_all();

}

drc_run(strcat(getcwd(),"/auto_drc_rules.ael"));

© Note
The AEL script is to be loaded from the ADS command line, to be executed. Optionally, this can be defined
as a function and be invoked by linking to an user-defined menu item from ADS layout window. The AEL

script should not be invoked from the DRC window.

33

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

DRC Functions (alphabetical)

(For category-wise list of Functions, click here (drc))

A

Name

all_edges()
(drc)

C

Name

compensate()
(drc)

contains() (drc)

corner edges()
(drc)

D

Type and Description

Boolean Operations on Edges. Sends all the edge segments of polygons of a layer to an
output error layer.

Type and Description

Conditional Selection. Moves error segments on a given layer by a given distance. Output
layer can only be used as input to dve_quadout and dve_plgout commands.

Conditional Selection. A DRC function to measure enclosure distance from the outside of the
contained polygon to the inside of the containing polygon.

Conditional Selection. Generates error segments around corners of specified inside angles.

Name
double clearance() (drc)

de_touch() (drc)

dve combine() (drc)

dve_bool_and() (drc)
dve_bool_not() (drc)

dve_bool_or() (drc)
dve export layer() (drc)

dve drc() (drc)

dve drc group() (drc)

dve identify cell layer()
(drc)

dve import cell layer()
(drc)

dve import layer() (drc)
dve_import_text_layer()
(drc)

dve oversize() (drc)

dve_plgout() (drc)

dve_quadout() (drc)

dedrc_run_drc_ex (drc)

dve_segsize() (drc)

dve undersize () (drc)

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
Type and Description

Conditional Selection. Measures the distance between edges of polygons on
different layers.

Selects polygons on one layer (inLayerl) in relation to edges of polygons on
another layer (inLayer2) if TouchCondition is true. Output data to opLayer polygon
layer.

Conditional Selection. Collects layers into one layer without modifying the shapes.
Results of a combine operation can be used in edge and clearance rule operations.
It is important to note that no merge or boolean operations are performed in the
process.

Merge Operations on Polygons. Merges overlapping polygons on two given layers.

Merge Operations on Polygons. Subtracts shapes in the second layer from shapes
in the first layer.

Merge Operations on Polygons. Merges overlapping shapes on a given layer.
Returns: A polygon layer.

DRC Layer Management. Used to export DRC error information. Data written to an
export layer will be directly exported back to the layout editor.

Conditional Selection. Used to select edges and polygons conditionally based upon
intrinsic properties and information derived during an operation on one or more
layers.

Conditional Selection. Groups the layers and instructs DRC engine to generate a
single DRC group. It loads the layers of a group only once instead of loading a
layer for every layer.

DRC Layer Management. Processes the design layers prior to input into the DRC
engine. Uses a AEL callback function for doing the customization in identification
steps.

DRC Layer Management. Used to get design data from the layout editor into the
design verification process. Copies instance artwork from the layout editor onto an
import layer that can be used in a rule command.

DRC Layer Management. Used to get design data from the layout editor into the
design verification process. Copies layer data from the layout editor onto an import
layer that can be used in a rule command.

DRC Layer Management. This command is useful for selecting polygons based on
whether they contain certain text. It copies the layer data of texts into an import
layer that can be used in a rule command and returns an import layer.

Sizing Operations on Polygons. Moves edges of polygons by the given sizing
distance. All edges are moved in parallel toward outside of polygons.

Operations for Polygon Extraction from Edges. Extracts entire polygons from
selected edges. If any section of a polygon is in error, then the entire polygon is
extracted.

Operations for Polygon Extraction from Edges. Extracts a quadrilateral from the
selected error segments on the given layer.

DRC Job Management. Used for executing DRC with an AEL command without
invoking the DRC window. Can be combined with other AEL functions to develop
customized a DRC solution.

Edge Selection Based on Corners. Expands or contracts an error segment on an
edge. This command is particularly useful when used with the compensate
command.

Sizing Operations on Polygons. Moves edges of polygons by the given sizing
distance. All edges are moved in parallel toward inside of polygons.

E

Name Type and Description

external() Measures the distance between outside edges of polygons of different layers.

(drc)

Edge Qualifiers \Use edge qualifiers either to select special options for a step of a rule or to filter tests
(drc) between pairs of edges. These are called qualifiers because they qualify the rule.

G

35

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Name Type and Description

gap() Conditional Selection. Measures the distance between outside edges of different polygons of the
(drc) same layer.

I

Name Type and Description

invert_edges() Boolean Operations on Edges. Deselects selected edges and simultaneously selects

(drc) unselected edges.

internal() (drc) Measures clearance from the inside of one edge of a polygon to the inside of another edge

of a different polygon.

intrusion() (drc) Macros. Checks the intrusion of BOTTOM layer into TOP layer (see Convention for TOP and
BOTTOM layers).

N

Name Type and Description

nests() Measures enclosure distance from the outside of the contained polygon to the inside of the

(drc) containing polygon.

notch() Conditional Selection. Measures the distance between outside edges of the same polygon on the
(drc) given layer.

(o)

off_grid() (drc) Flags edges whose end points fall off a specified grid.

P

Name Type and Description

poly_area() (drc) Polygon Selection. Selects polygons based upon area. For polygons with holes, the
area of the hole is subtracted.

poly_hole_count() Polygon Selection. Selects polygons based upon the number of holes.

(drc)

poly_line_length() Polygon Selection. Selects polygons based upon the minimum line length.

(drc)

poly_perimeter() Polygon Selection. Selects polygons based upon the total length of the outside edges.

(drc)

poly_edge_code() Polygon Selection. Select polygons based upon edge code information computed during

(drc) a merge operation. Select only polygons with have all the given path types.

poly_path_count() Polygon Selection. Select polygons based upon path count information computed
(drc) during a merge operation.

poly_path_length() Polygon Selection. Select polygons based upon path length properties computed during
(drc) a merge operation.

poly_inter_layer() Polygon Selection. Select polygons on one layer (inLayerl) in relation to edges of
(drc) polygons on another layer (inLayer2) if any of the given constrains are true.
protrusion() (drc) Checks the extension of TOP layer out of BOTTOM layer.

S

Name Type and Description

spacing() (drc) |Conditional Selection. Simultaneously measures the distance between outside edges of
different polygons of the same layer (gap) and outside edges of the same polygon (notch).

single Conditional Selection. Measures the distance between edges of polygons on the same layer.
clearance() (drc)

w

Name Type and Description

width() Conditional Selection. A DRC clearance function to check from the inside of one edge of a polygon
(drc) to the inside of another edge of the same polygon.

36

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

DRC Functions (by category)

(For alphabetized list of Functions, click here (drc))

Import and Export Layers

Edge Selection

Edge Operations

Polygon Selection

Polygon Operations

DRC Job Management

Import and Export Layers

Name

Importing Design
Layers

dve import layer()
(drc)

Exporting DRC
Errors

dve_export_layer()
(drc)

Cell Layers

dve identify cell
layer() (drc)

dve import cell layer()
(drc)

Text Layers

dve import text layer()
(drc)

Description

Imports design data from the layout editor into the design verification process. Copies
layer data from the layout editor onto an import layer that can be used in a rule
command.

Used to export DRC error information. Data written to an export layer will be directly
exported back to the layout editor. Returns an export layer.

Processes the design layers prior to input into the DRC engine.

Imports design data from the layout editor into the design verification process. Copies
instance artwork from the layout editor onto an import layer that can be used in a
rule command.

Creates an import layer containing the bounding boxes of all text strings for the
specified text. Can be used to create derived layers including or excluding other
polygons overlaying these text markers.

Edge Selection

37

Name
dve_drc() (drc)

Edge Selection Based On
Clearance

(Between Polygons on a
Singe Layer)

width() (drc)

gap() (drc)

notch() (drc)

spacing() (drc)

single clearance() (drc)

Edge Selection Based On
Clearance

(Between Polygons on a
Different Layers)

contains() (drc)

double_clearance() (drc)
external() (drc)
intrusion() (drc)

internal() (drc)
nests() (drc)

protrusion() (drc)
Edge Qualifiers (drc)

Edge Selection Based on
Corners

corner_edges() (drc)

Edge Selection Based on
Grid

off_grid() (drc)

Edge Selection at the
Polygon Level

all_edges() (drc)
invert_edges() (drc)

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Description

Selects edges and polygons conditionally based upon intrinsic properties and
information derived during an operation on one or more layers.

A DRC clearance function to check from the inside of one edge of a polygon to
the inside of another edge of the same polygon.

Measures the distance between outside edges of different polygons of the
same layer.

Measures the distance between outside edges of the same polygon on the
given layer.

Simultaneously measures the distance between outside edges of different
polygons of the same layer (gap) and outside edges of the same polygon
(notch).

Measures the distance between edges of polygons on the same layer.

A DRC function to measure enclosure distance from the outside of the
contained polygon to the inside of the containing polygon.

Measures the distance between edges of polygons on different layers.
Measures the distance between outside edges of polygons of different layers.

Checks the intrusion of BOTTOM layer into TOP layer (see Convention for TOP
and BOTTOM layers).

Measures clearance from the inside of one edge of a polygon to the inside of
another edge of a different polygon.

Measures enclosure distance from the outside of the contained polygon to the
inside of the containing polygon.

Checks the extension of TOP layer out of BOTTOM layer.

Use edge qualifiers either to select special options for a step of a rule or to
filter tests between pairs of edges. These are called qualifiers because they
qualify the rule.

Generates error segments around corners of specified inside angles.

Flags edges whose end points fall off a specified grid.

Sends all the edge segments of polygons of a layer to an output error layer.
Deselects selected edges and simultaneously selects unselected edges.

Edge Operations

Name
Sizing
Operations

compensate()
(drc)
dve_segsize()
(drc)

Description

Moves error segments on a given layer by a given distance.

Expands or contracts an error segment on an edge. This command is particularly useful
when used with the compensate command.

Polygon Selection

38

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Name

Polygon Selection at the
Layer Level

dve_combine() (drc)
dve_drc_group() (drc)

de_touch() (drc)

Polygon Selection Based on
Intrinsic Properties

poly_area() (drc)

poly_hole_count() (drc)
poly_line_length() (drc)
poly_perimeter() (drc)

Polygon Selection Based on
Merge Properties

poly_edge_code() (drc)
poly_path_count() (drc)
poly_path_length() (drc)
Polygon Selection Based on

Edge Relationships
poly_inter_layer() (drc)

Description

Collects layers into one layer without modifying the shapes.

Groups the layers and instructs DRC engine to generate a single DRC group.
It loads the layers of a group only once instead of loading a layer for every
layer.

Selects polygons on one layer (inLayerl) in relation to edges of polygons on
another layer (inLayer2) if TouchCondition is true. Output data to opLayer
polygon layer.

Selects polygons based upon area. For polygons with holes, the area of the
hole is subtracted.

Selects polygons based upon the number of holes.
Selects polygons based upon the minimum line length.
Selects polygons based upon the total length of the outside edges.

Select polygons based upon edge code information computed during a
merge operation. Select only polygons with have all the given path types.

Select polygons based upon path count information computed during a
merge operation.

Select polygons based upon path length properties computed during a
merge operation.

Select polygons on one layer (inLayerl) in relation to edges of polygons on
another layer (inLayer2) if any of the given constrains are true.

Polygon Operations

Name

Polygon Merge Operations
dve_bool_and() (drc)
dve_bool_not() (drc)
dve_bool_or() (drc)

Polygon Extraction Based on

Selected Edges
dve_plgout() (drc)
dve_quadout() (drc)

Polygon Sizing Operations
dve oversize() (drc)

dve undersize () (drc)

Description

Merges overlapping polygons on two given layers.
Subtracts shapes in the second layer from shapes in the first layer.
Merges overlapping shapes on a given layer. Returns: A polygon layer.

Extracts entire polygons from selected edges. If any section of a polygon
is in error, then the entire polygon is extracted.

Extracts a quadrilateral from the selected error segments on the given
layer.

Moves edges of polygons by the given sizing distance. All edges are
moved in parallel toward outside of polygons.

Moves edges of polygons by the given sizing distance. All edges are
moved in parallel toward inside of polygons.

DRC Job Management

Name

dedrc_run_drc_ex
(drc)

Description

Used for executing DRC with an AEL command without invoking the DRC window. Can
be combined with other AEL functions to develop customized a DRC solution.

39

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

DRC Job Management
This section describes managing DRC using custom AEL scripting.
e dedrc run drc ex() (drc)
dedrc_run_drc_ex

Used for executing DRC with an AEL command without invoking the DRC window. Can be
combined with other AEL functions to develop customized a DRC solution.

Syntax:

dedrc_run_drc_ex(winInst, rulesFile, jobName, checkWindowOnly, showResults);
where,
winInst is the window handle.
rulesFile is the AEL rule filename to be executed.

jobName is the name by which the results are to be stored and displayed in the
DRC results viewer window.

checkWindowOnly indicates the section of the layout to be considered for DRC,
where:

e FALSE = Includes the entire layout.
e TRUE = Includes the layout window currently in view.

showResults is used to control the display of results after the DRC job is
executed, where:

« FALSE = Does not displays the results after executing the rules.
« TRUE = Invokes DRC results viewer to display the results after executing
the rules.

Example

// get current active window

decl winInst = api_get_current_window();

// Declare the rule file name

decl rulefFileName = "my_rules.ael";

// Declare the job name for the DRC run

decl drcJdobName = "my_rules_drc";

// Run the job for capacitor rules and show the results
dedrc_run_drc_ex(winInst, ruleFileName, drcJobName, FALSE, TRUE);

40

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

DRC Match Functions for Error Checking
This section describes how to manage DRC errors using custom AEL scripting. This feature
provides powerful AEL function to match the error string of DRC error and modify errors.
It enables the DRC engine to identify the errors and allow the AEL function to interpret the
errors. Once the DRC runs, error checking is done in post processing mode.

You can also examine the DRC error in an AEL callback function and modify the error

string, if needed. If the callback returns NULL the DRC error is deleted. This is useful for
filtering out the false errors.

Match AEL Function

The Match AEL Function includes the following:

1. Register function
2. Error callback

Register Function
Syntax
de_add_error_callback (<DRC error message>,<error Call Back Name>)
Explanation
This function takes two arguments message to be changed and error call back name. DRC

error callback is invoked for every occurrence of DRC error with the above message <DRC
error message>.

Error CallBack

Syntax

defun < error Call Back Name >(shapeH,drcID,drcMsg)
Complete Match AEL Function

defun drctest_cb(shapeH, drcID, drcMessage)
{

decl newDrcMessage = NULL;

decl length, width, ratio;

decl airBridgeRatio = .5;

decl dgBBox = db_get_shape_bbox(shapeH);

decl x1 = db_get_bbox_x1(dgBBox);
decl y1 = db_get_bbox_y1l(dgBBox);
decl x2 = db_get bbox_ x2(dgBBox) ;
decl y2 = db_get_bbox_y2(dgBBox);

length = x2 - x1;
width = y2 - yi;
if (width > 0)
{

ratio = length/width;

if (ratio < airBridgeRatio)

{

newDrcMessage = strcat("Air bridge ratio less than ", identify_value(airBridgeRatio));

}

return(newDrcMessage) ;

41

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
}

de_add_error_callback("air_bridge"," drctest_cb");

Running Match AEL function

To run Match AEL function:

1. From ADS Main window, click Tools > Command Line and load the Match AEL file.

B Command Line [Session file: C:\DOCUME~ 1\prsarkar\L OCALS~1\Te... E|

Command History

Command > =)
| load("C: fusers/default/DRC_Air_Bridge_AGILENT _wrk/DRC_error_calbacks™); % |

Current Vocabulary: |Cmd0p | Del Favorite

[Apply] [Clear History l [Cancel] [Help l

2. Open a design in the Layout window.
3. From your Layout window, click Tools > DRC.

4. Select ADS as the DRC Engine and browse to the Rule file and click Run.

DRCEngine |ADS | [settings |

Rules list

Rule location: |W0rkspace vl

Rule Mame Rule File

Rule file tLENT_wrk'weriﬁcaﬁnn'q'ules'n,air_bridge.ael| [Browse...

[Creabe Width/Spacing Rule. .]

Check area

() Full design

) Current window view

Job name |DRC_Air_Briu:IgE_AGILENT_Iib_testﬂirBridgE_drc |

[Run H Cancel][Help]

5. For futher details on how to set up the DRC, refer Setting Up a Quick DRC (drc).

42

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Boolean Operations on Edges

This section describes the boolean operations between segments of an edge. These
operations include:

« all_edges() (drc)

e invert_edges() (drc)

all_edges()
Sends all the edge segments of polygons of a layer to an output error layer.

See also: dve_drc() (drc)

Syntax
dve_drc (all_edges (inLayer) [, msgString]);

where:

\inLayer \A polygon layer

\msgString \A string value that will be attached to the selected error segments

Example

decl lyrCond2 dve_import_layer ("cond2");

decl drcError dve_export_layer ("ads_drc_error");

decl lyrWork = NULL;

lyrWork = dve_drc (poly_area (lyrCond2) < 10.0);

drcError += dve_drc (all_edges (lyrWork),
"Conductive metal area < 10.0")

invert_edges()

Deselects selected edges and simultaneously selects unselected edges.
43

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

See also: dve_drc() (drc)

Syntax
dve_drc (invert_edges (inLayer) [, msgString]);

where:

inLayer |A polygon layer
msgString A string value that will be attached to the selected error segments

Example

The following example demonstrates the use of invert_edges() to highlight paths that are
within a specified clearance distance.

First, measure the distance between parallel edges and select edges that are within the
distance of 12.

decl lyrCond = dve_import_layer ("cond");

decl drcError = dve_export_layer ("ads_drc_error'");

decl lyrEdgesGap = dve_drc (single_clearance (lyrCond) <= 12.0,
DVE_RN_POLARITY, DVE_RV_OUTSIDE, DVE RN _TEMPLATE, DVE_RV_OPPOSITE,
DVE_RN_EDGE_ANGLES, DVE_RV_PARALLEL, DVE_RN_STRUCTURE, DVE_RV_DIFF_POLYGON);

Next, use invert_edges to invert the error segments: good become bad and bad become
good.

decl lyrtEdgesInvert= dve_drc (invert_edges (lyrkEdgesGap));

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Select opposite edges inside the paths:

decl lyrkdges= dve_drc (double_clearance (lyrtdgesGap, lyrEdgesInvert) 26.0,
DVE_RN_POLARITY, DVE_RV_INSIDE,
DVE_RN_TEMPLATE, DVE_RV_OPPOSITE,
DVE_RN_EDGE_ANGLES, DVE_RV_PARALLEL);

Finally, extract the path using quadout:

decl lyrPoly = dve_quadout (lyrEdges);
drcError = dve_drc (all_edges (lyrPoly), "Parallel interconnect < 12.0");

45

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Conditional Selection

This section describes the DRC commands used for conditional selection. The section
includes information on:

e dve_drc() (drc)
dve_combine() (drc)
dve_drc_group() (drc)
de_touch() (drc)
Edge Selection Based On Clearance (drc)
o width() (drc)
gap() (drc)
notch() (drc)
spacing() (drc)
single_clearance() (drc)
internal() (drc)
external() (drc)
contains() (drc)
nests() (drc)
double_clearance() (drc)
Edge Qualifiers (drc)
o Edge Selection Based on Corners (drc)
o corner_edges() (drc)
e Edge Selection Based on Grid (drc)
o Off _grid() (drc)
e Edge Compensation (drc)
o compensate() (drc)
o dve_segsize() (drc)

o o 0o o o o o o o o

compensate()

Moves error segments on a given layer by a given distance. Output layer can only be used
as input to dve_quadout and dve_plgout commands. Returns: A layer with selected edge
segments.

See also: dve_plgout() (drc), dve_quadout() (drc)

Syntax

edgelayerOut = dve_drc(compensate (edgelLayerln, distance [,resourceName,
resourceValue]);

where:

edgelayerln, edgelLayerOut An edge layer
distance A real value

Compensate Template Qualifier

DVE_RN_COMP_TEMPLATE

46

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
Qualifier Resource Value

DVE_RV_CHAMFER Compensate using an angle from the orthogonal
DVE_RV_ALIGN (default) Compensate using an alignment to the adjacent edge
DVE_RV_BISECT |Compensate where the angle is bisected at the corner
DVE_RV_OPPOSITE |Compensate directly opposite the edge

Positive and Negative Compensations
Both positive compensation and negative compensation are supported.

Positive compensation: for example, suppose that when two edges face one another
within a specified clearance distance D=50 they must be compensated towards each other
by 10.0

positive compensation

lyrEdges = dve_drc(spacing(lyrCond) < 50, "d < 50", DVE_RN_EDGE_ANGLES,
DVE_RV_PARALLEL);

lyreEdgesComp = dve_drc(compensate(lyrEdges, 10));

lyrPolyComp = dve_quadout(lyrEdgesComp);

drcError = dve_drc(all_edges(lyrPolyComp), "positive compensation");

For negative compensation, edges are moved away from each other by the specified
amount:

D=50
-_
-

negative compensation

Then a not function can be used to cut these sections away from the original polygon:

lyrEdges = dve_drc(spacing(lyrCond) < 50, "d < 50", DVE_RN_EDGE_ANGLES,
DVE_RV_PARALLEL);

lyrtEdgesComp = dve_drc(compensate(lyrEdges , -10));
lyrPolyComp = dve_quadout(lyrEdgesComp);
lyrPolyNot = dve_bool_not(lyrCond, lyrPolyComp);

Adjusting the COMPENSATE command
The compensate command can be given qualifiers which tell it:

+ How to chamfer a compensated segment.
» How to specify the behavior at a concave and a convex corner.

47

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
How to chamfer a compensated segment

Normally, the compensated segment is projected orthogonally to the edge:

—

As an alternative, specify a chamfer angle in degrees:

chamfer angle
VAN
I

lyreEdgesComp = dve_drc(compensate(lyrtdges ,30), DVE_RN_COMP_TEMPLATE,
DVE_RV_CHAMFER, DVE_RN_CHAMFER_ANGLE, 45);

The chamfer angle is expressed as the deviation from the orthogonal, so
"DVE_RN_CHAMFER_ANGLE, 0" is the (default) orthogonal.

The template used by the compensate command

Consider an edge to be compensated, which ends at a concave and a convex corner:

—

concave convex
corner corner

The default behavior is to align the compensated section at the concave corner and to
project it orthogonally at the convex corner:

e

A different behavior can be defined by specifying a compensate template:
Compensate with an opposite template

A

lyreEdgesComp = dve_drc(compensate(lyrtdges, 5), DVE_RN_COMP_TEMPLATE, DVE_RV_OPPOSITE);

Compensate with a bisect template. The program bisects the angle at the corners:

48

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

lyreEdgesComp = dve_drc(compensate(lyrtEdges ,5), DVE_RN_COMP_TEMPLATE, DVE_RV_BISECT);

Compensate with an align template. The compensated section is aligned at the adjacent
edge:

lyrEdgesComp = dve_drc(compensate(lyrEdges ,5), DVE_RN_COMP_TEMPLATE, DVE_RV_ALIGN);

Example

decl lyrCond = dve_import_layer ("cond");

decl drcError = dve_export_layer ("ads_drc_error'");

decl lyrEdges = NULL;

decl lyrtEdgesComp = NULL;

decl lyrPolyCond = NULL;

decl lyrPolyComp = NULL;

decl lyrPolyOversize = NULL;

// Generate an oversized polygon

lyrEdges = dve_drc (width (lyrCond) < 5.0);

lyrEdgesComp = dve_drc (compensate (lyrEdges, 0.5),
DVE_RN_COMP_TEMPLATE, DVE_RV_CHAMFER,
DVE_RN_CHAMFER_ANGLE, 45);

lyrPolyCond = dve_quadout (lyrEdges);

lyrPolyComp = dve_qguadout (lyrEdgesComp);

lyrPolyOversize = dve_bool_or (lyrPolyCond, lyrPolyComp);

// Check gap clearance

drcError += dve_drc (gap (lyrPolyOversize) < 4.0, "Gap clearance < 4.0");

contains()

A DRC function to measure enclosure distance from the outside of the contained polygon
to the inside of the containing polygon.
See also: dve_drc() (drc)

Syntax

dve_drc (contains (inLayerl, inLayer2) operator distance [, msgString]
[, qualifierName, qualifierValue...]);

where:

49

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

\inLayerl \Containing polygon layer
\inLayerZ \Contained polygon layer
operator < Less than
<= Less than or equal to
== Equal to

> Greater than
>= Greater than or equal to

distance A distance value in layout units

\msgString \A string value that will be attached to the selected error segments
\qua/iﬁerName, qualifierValue \A name, value pair that qualifies the selection

Edge Qualifiers

DVE_RN_EDGE_ANGLES (drc)

DVE_RN_ANGLE_TOLERANCE (drc)

DVE_RN_SEPARATE (drc)

DVE _RN_TOUCH (drc)

DVE RN_SLOPE, DVE_RN_SLOPE _FROM, DVE_RN_SLOPE_TO (drc)
DVE_RN_TEMPLATE, DVE_RN_TEMPLATE_TO, DVE_RN_TEMPLATE_FROM (drc)
DVE_RN_UPPER_BOUND (drc)

The contains() command checks the similar edges that are checked by the nests() (drc) command. The
only difference between them being the order of layers passed.

F

Example

decl lyrCond = dve_import_layer ("cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error'");

drcError += dve_drc (contains (lyrCond, lyrCond2) < 3.0, "Enclosure clearance < 3.0");

® The order of the layers is important while using the contains() command. First layer is the containing layer
and second layer is the contained layer.

By default, the intersecting edges are also checked. To ignore it, use the qualifier DVE_RN_SEPARATE
(drc) with the resource value 'DVE_RV_SEPARATE'

50

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

" |Note
The contains() command will also check on the edges even when the two different layers polygons are not
included in each other if the clearance distance satisfies the constraint. A user may see this behavior as a
false error but actually the DRC engine is flagging the error when the constraint is satisfied. The DRC
engine will not check which is a containing or a contained layer.

Constraint is 'from Inside Edge of First Layer to Outside Edge of Second Layer’,

decl lyrCond = dve_import_layer ("cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error'");

// cond is the First Layer and cond2 is the Second Layer

drcError += dve_drc (contains (lyrCond, lyrCond2) < 3.0,
"Enclosure clearance < 3.0",
DVE_RN_TEMPLATE,DVE_RV_OPPOSITE);

cond2
(Second Layer)

@ Tip

To avoid a situation as shown above, declare a work layer which has a Boolean AND operation of the two
layers in consideration. The code may be modified as:

decl lyrCond = dve_import_layer ("cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error");

decl temp1 = dve_bool_and(lyrCond2,lyrCond);

drcError += dve_drc (contains(lyrCond,temp1) < 3.0,

"Enclosure clearance < 3.0",

DVE_RN_TEMPLATE,DVE_RV_OPPOSITE);

corner_edges()

Generates error segments around corners of specified inside angles.

51

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
See also: dve_drc() (drc)

Syntax

dve_drc (corner_edges (inLayer, segmentLength, beginningAngle,
endingAngle) [,msgString]);
where:

inLayer A polygon layer

segmentLength A real value in layout units that represents the length of the error segment that will be drawn
around the corner

beginningAngle A real value that represents the minimum angle that will be selected
endingAngle A real value that represents the max angle that will be selected
msgString A string value that will be attached to the selected error segments

Example 1

decl lyrCond = dve_import_layer ("cond");

decl drcError = dve_export_layer ("ads_drc_error");

decl lyrEdgesCvex = NULL;

decl lyrEdgesStub = NULL;

decl lyrStub = NULL;

lyreEdgesCvex = dve_drc (corner_edges (lyrCond, 0.5, 1, 91));

lyrEdgesStub = dve_drc (single_clearance (lyrEdgesCvex) < 3.0,
DVE_RN_POLARITY, DVE_RV_INSIDE,
DVE_RN_TEMPLATE, DVE_RV_OPPOSITE,
DVE_RN_EDGE_ANGLES, DVE_RV_PARALLEL,
DVE_RN_STRUCTURE, DVE_RV_SAME_ POLYGON);

lyrStub = dve_quadout (lyrEdgesStub);

drcError += dve_drc (all_edges (lyrStub), "Stub");

Example 2

Consider some geometry with a chamfer corner and a rule to check the width of 2.0:

—

drc_error += dve_drc(width(cond) < 2, "Conductor width less than 2.0 um");

This rule fails to detect the error because the default template for width() is
DVE_RV_OPPOSITE. The rectangular opposite template from the bottom edge hits the
sloping edge, but the template from the sloping edge misses the bottom edge. We can
change this by using an arc template with a specified curvature. This does detect the error
but also has false errors at the top. The solution is to restrict the test to act between

« an orthogonal (90 degrees) corner
e an obtuse (> 90 degrees < 180 degrees) corner
so that we miss the false errors between pairs of obtuse corners. We can pick out

52

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
these corners with the corner_edges command:

a_orth= dve_drc(corner_edges(lyrCond, 0.2, 89.9, 90.1), "orthogonal corner");
a_obtuse= dve_drc(corner_edges(lyrCond , 0.2, 90.1, 179.9), "obtuse corner");

© Note
The program only holds angles to 0.1 degree precision. Also, we don't test the orthogonal corner for
exactly 90 degrees, because this might fail if the whole geometry was at a different angle.

Then we apply the equivalent of a width test from the orthogonal to obtuse corners.
This is done using a double_clearance rule, from the inside of each edge at the
orthogonal and obtuse corners:

drc_error += dve_drc(double clearance(a_orth, a obtuse) < 2.0, "test width
from orthogonal to obtuse corners", DVE_RN_POLARITY_FROM, DVE_RV_INSIDE,
DVE_RN_POLARITY_TO, DVE_RV_INSIDE, DVE_RN_TEMPLATE_FROM, DVE_RV_OPPOSITE,
DVE_RN_TEMPLATE_TO, DVE_RV_ARC_OPPOSITE, DVE_RN_SEPARATE, DVE_RV_SEPARATE);

(i ‘Note
T The qualifier DVE_RV_SEPARATE is used to apply the test only to non-intersecting edges.

Edge Selection Based on Grid

Edge Selection Based on Grid selection function includes: off_grid() (drc).

de_touch()

Selects polygons on one layer (inLayerl) in relation to edges of polygons on another layer
(inLayer2) if TouchCondition is true. Output data to opLayer polygon layer.

Syntax:

de_touch(inlayerl, inlayer2, opLayer, ACCEPT/REJECT, "TouchCondition")

where

’inLayerl ’Input layer 1

’inLayerZ ’Input layer 2

’opLayer ’Output layer

’ACCEPT ’Selects the matching polygons

’REJECTS ’Does not select the matching polygons

’TouchCondition ’Can be one of these - ">n" or "<n" or "==n" or "I=n" where n is a +ve integer
Example

53

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
// The below code creates a copy of cond layer polygons
// which touch more than one cond2 layer polygon into the temp layer.
de_touch(cond, cond2, temp, ACCEPT, >1);
// The below code creates a copy of cond layer polygons
// which DONOT touch more than one cond2 layer polygon into the temp layer.
de_touch(cond, cond2, temp, REJECT, >1);

© This ADS AEL function is to be used inside the callback associated with one of the DRC import layer
functions. It is not to be used directly in the rule file.

double_clearance()

Measures the distance between edges of polygons on different layers.

See also: dve_drc() (drc)

Syntax

dve_drc (double_clearance (inLayerl, inLayer2) operator distance [, msgString]
[,qualifierName, qualifierValue...]);

where:
inLayerl Containing polygon layer
inLayer2 Contained polygon layer
operator < Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to
distance A distance value in layout units
msgString A string value that will be attached to the selected error segments

qualifierName, qualifierValue A name, value pair that qualifies the selection

Edge Qualifier

DVE _RN_POLARITY, DVE_RN_POLARITY FROM, DVE _RN_POLARITY TO (drc)
DVE_RN_EDGE_ANGLES (drc)

DVE_RN_ANGLE_TOLERANCE (drc)

DVE _RN_SEPARATE (drc)

DVE_RN_TOUCH (drc)

DVE_RN_SLOPE, DVE_RN_SLOPE_FROM, DVE_RN_SLOPE_TO (drc)

DVE _RN_TEMPLATE, DVE_RN_TEMPLATE_TO, DVE_RN_TEMPLATE_FROM (drc)
DVE _RN_UPPER_BOUND (drc)

Examples

1. Double clearance check without any Edge Qualifiers (drc).

decl lyr_cond = dve_import_layer("cond");.
decl lyr_cond2 = dve_import_layer("cond2");
decl lyr_error = dve_export_layer(101);

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
lyr_error += dve_drc(double_clearance(lyr_cond, lyr_cond2) < 3.00,
"Outside edges separation < 3.0");

clearance check on outside edges of
different polygons on different layers

cond2

||6|By default, double_clearance() will check on the outside edges

Double clearance check on parallel edges.

decl lyr_cond = dve_import_layer("cond");
decl lyr_cond2 = dve_import_layer("cond2");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc(double_clearance(lyr_cond, lyr_cond2) < 3.00,
"Outside edges parallel separation < 3.0",
DVE_RN_EDGE_ANGLES,DVE_RV_PARALLEL);

Clearance check on Parallel edges

cond?

Double clearance check from inside edge of first layer to outside edge of second layer.
55

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

decl lyr_cond = dve_import_layer("cond");
decl lyr_cond2 = dve_import_layer("cond2");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc(double_clearance(lyr_cond, lyr_cond2) < 3.00,
"cond2 inside cond clearance < 3.0",
DVE_RN_POLARITY_FROM,DVE_RV_INSIDE,
DVE_RN_POLARITY_TO,DVE RV_OUTSIDE);

© Here, cond is the first layer and cond?2 is the second layer as passed as inLayers in double_clearance(). If
the order is reversed then cond2 will become the first layer and there will be no error in the figure shown
as Polarity FROM is INSIDE edge of the first layer

dve_combine()

Collects layers into one layer without modifying the shapes. Results of a combine
operation can be used in edge and clearance rule operations. It is important to note that
no merge or boolean operations are performed in the process. Returns: a polygon layer.

Syntax
dve_combine (inLayerl [, inLayer2, . . ., inLayerN])

where:

\inLayerl, inLayer2, inLayerN A polygon layer

Example

decl lyrCond = dve_import_layer("cond");

decl lyrCond2 = dve_import_layer("cond2");

decl lyrDiel = dve_import_layer("diel");

decl drcError = dve_export_layer("ads_drc_error");

// collect layers cond and cond2 into the same layer so that shapes
// on these layers are checked together

decl lyrPolyOverlap = dve_combine(lyrCond ,lyrCond2);

// apply clearance rule

56

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
drcError += dve_drc(double_clearance(lyrDiel,lyrPolyOverlap) < 5,
"Conductive metal overlaps", DVE_RN_POLARITY_FROM, DVE_RV_INSIDE,
DVE_RN_POLARITY_TO, DVE_RV_OUTSIDE);

cond

Edge Selection Based On Clearance

The Edge Selection Based On Clearance selection functions are used where the output
layer contains polygons with selected edges. Functions are separated by number of layers.
1 Layer Check:

« width() (drc) checks between inside edges of the same polygon

gap() (drc) checks between outside edges of different polygons

notch() (drc) checks between outside edges of the same polygon

spacing() (drc) combines gap and notch tests

single_clearance() (drc) "neutral command", no polarity (outside, inside) and no
qualifier ("same" or "different polygons") is specified

2 Layer Check:

« internal() (drc) the "width" command for 2 layers

e external() (drc) the "gap" command for 2 layers

» contains() (drc) checks from the inside edges on the first layer to the outside edges
on the second layer

» nests() (drc) checks from the outside edges on the first layer to the inside edges on
the second layer

o double_clearance() (drc) "neutral command", no polarity (outside, inside) and no
qualifier ("same" or "different polygons") is specified

These are the default behaviors. The default can be changed by specifying:

« A polarity (see DVE_RN_POLARITY, DVE_RN_POLARITY _FROM,
DVE_RN_POLARITY_TO (drc))

e A qualifier such as DVE_RN_STRUCTURE (drc)

© Note
Be careful when changing the default behavior. For example if you specify "DVE_RN_POLARITY_FROM,
DVE_RV_OUTSIDE, DVE_RN_POLARITY_TO, DVE_RV_OUTSIDE" for a width command, it actually checks
notch!

57

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
dve_drc()

Used to select edges and polygons conditionally based upon intrinsic properties and
information derived during an operation on one or more layers. Returns: a layer
containing selected edge segments.

Syntax

dve_drc (drc_expression [, msgString][, qualifierName, qualifierValue]);

where:

drc_expresssion |is an AEL expression in the format:

drc_subfunction |A selection function to be performed on the polygons or edges on a given layer. Edges and
polygons that meet the criteria are selected and copied to the output layer.
The subfunctions are:
Edge Selection Based On Clearance (drc) (output layer contains polygons with selected
edges) selection functions are separated by number of layers:
1 Layer check: gap, notch, single_clearance, spacing, width
2 Layer check: contains, double_clearance, external, internal, nests,
Edge Selection Based on Corners (drc) selection functions include: corner_edges
Edge Selection Based on Grid (drc) selection functions include: off_grid
Edge Compensation (drc) selection functions include: compensate, dve_segsize
Polygon Selection Based on Intrinsic Properties (drc) (output layer contains polygons)
selection functions include: poly_area, poly_hole_count, poly_line_length, poly_perimeter
Polygon Selection Based on Merge Properties (drc) (output layer contains polygons) selection
functions include: poly_edge_code, poly_path_count, poly_path_length
Polygon Selection Based on Edge Relationships (drc) (output layer contains polygons)
selection functions include: poly_inter_layer

parameter A parameter to a dve_drc subfunction command
operator < Less than

<= Less than or equal to

== Equal to

> Greater than
>= Greater than or equal to

rValue A real or integer value that depends upon the DRC subfunction

msgString A string that will be attached to the selected edges. Only pertains to selected edges. Can
only be used in conjunction with the export nomenclature (such as, "+="

qualifierName |A constant the represents the name of the qualifier. Use qualifiers to select special options of
a rule, or to filter tests between a pair of edges. Qualifiers are documented for each dve_drc
subfunction

qualifierValue |A value that will be applied to the named qualifier. Valid range of values are documented for
each dve_drc subfunction

Example

decl lyrCond = dve_import_layer ("cond");
decl drcError = dve_export_layer ("ads_drc_error");
drcError 4= dve_drc (width (lyrCond) < 3.0, "Width of conductive metal < 3.0");

dve_drc_group()

Groups the layers and instructs DRC engine to generate a single DRC group. It loads the
layers of a group only once instead of loading a layer for every layer. In the below
example, layers lyrCond, lyrCond2, lyrDie will be laoded only once. Note: DRC engine

58

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
might run out of memory if too many layers are loaded in a group. If DRC engine runs out
of memory then a message is displayed in the status window. To overcome this problem,
it is recommned to reduce the number of layers in a group and define multiple groups.

Syntax
dve_drc_group (inLayerl [, inLayer2, . . ., inLayerN])

where:

inLayerl1, inLayer2, inLayerN |A polygon layer

Example

decl lyrCond = dve_import_layer ("cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl lyrDiel = dve_import_layer ("diel");

decl lyrResi = dve_import_layer ('"resi");

decl drcError = dve_export_layer ("ads_drc_error');

// Group layers lyrCond, lyrCond2 and lyrDiel

dve_drc_group(lyrCond, lyrCond2, lyrDiel);

drcError += dve_drc(external(lyrCond,lyrCond2)<25,"Minimum spacing b/w layer cond and cond2 is
25");

drcError += dve_drc(external(lyrCond,lyrDiel)<15,"Minimum spacing b/w layer cond and diel is 15");
drcError += dve_drc(external(lyrCond2,lyrDiel)<25,"Minimum spacing b/w layer cond2 and diel is
25");

// Group layers lyrCond, lyrCond2 and lyrResi

dve_drc_group(lyrCond, lyrCond2, lyrResi);

drcError += dve_bool_and(lyrCond,lyrCond2);

drcError += dve_bool_and(lyrCond,lyrResi);

drcError += dve_bool_and(lyrCond2,lyrResi);

dve_segsize()

Expands or contracts an error segment on an edge. This command is particularly useful
when used with the compensate command.

See also: compensate() (drc).

Syntax

edgelayerOut = dve_segsize(errorEdgelLayer, distance);
where

edgelLayerOut |An edge layer
errorEdgelLayer |A layer with error segments
distance A real value

For a positive distance the expansion stops at a vertex. For a negative distance a segment
that ends at a vertex remains "pinned" to that vertex.

59

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
Example

A requirement to compensate error segments, based on some clearance operation:

decl lyrMetal = dve_import_layer("Metall");

decl drcError = dve_export_layer("Error101");

drcError= dve_drc(single_clearance(lyrMetal) < 20.0, DVE_RN_EDGE_ANGLES,
DVE_RV_PARALLEL, DVE_RN_POLARITY, DVE_RV_OUTSIDE, DVE_RN_STRUCTURE,

DVE_RV_DIFF_POLYGON, DVE_RN_TEMPLATE, DVE_RV_OPPOSITE);

Now, perform compensation:

decl lyrEdges, lyrEdgesCmp, lyrPolyCmp;

lyrEdges = dve_drc(single_clearance(lyrMetal) < 20.0, ...);
lyrEdgesCmp = dve_drc(compensate(lyrkEdges, 4));

lyrPolyCmp = dve_quadout(lyrEdgesCmp);

drcError += dve_drc(all_edges(lyrPolyCmp), "clearance < 20");

This may produce undesirably narrow notches between the sections on the left. Eliminate
these notches with the segsize operation, which expands or contracts every error
segments by a specified amount:

decl lyrEdges, lyrEdgesSized, lyrtEdgesCmp, lyrPolyCmp;
lyrEdges = dve_drc(single_clearance(lyrMetal) < 20.0,...);
lyrEdgesSized = dve_segsize(lyrEdges, 20);

lyrEdgesCmp = dve_drc(compensate(lyrEdgesSized, 4));
lyrPolyCmp = dve_quadout(lyrEdgesCmp);

drcError += dve_drc(all_edges(lyrPolyCmp), "clearance < 20");

Note that the results of the segsize operation merge together. Now, perform a segsize
with a negative distance:

decl lyrEdges, lyrEdgesSized, lyrEdgesUnderSized, lyrkEdgesCmp, lyrPolyCmp;

lyrEdges = dve_drc(single_clearance(lyrMetal) < 20.0,...);
lyrEdgesSized = dve_segsize(lyrkEdges , 20);
lyrEdgesUnderSized = dve_segsize(lyrkEdgesSized , -20);

lyreEdgesCmp = dve_drc(compensate(lyrtEdgesUnderSized , 4));
60

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
lyrPolyCmp = dve_quadout(lyrEdgesCmp);
drcError += dve_drc(all_edges(lyrPolyCmp), "clearance < 20");

Edges that contain error segments can be extracted by specifying a distance larger than
the edge length (edgeout operation):

lyrEdgesSized = dve_segsize(lyrEdges, 500);

Edge Qualifiers

Use edge qualifiers either to select special options for a step of a rule or to filter tests
between pairs of edges. These are called qualifiers because they qualify the rule.

DVE_RN_UPPER_BOUND
Specifies the upper bound value in a 1-layer clearance test with a GT or GE operator.

Qualifier Resource Value:

<real positive value> Upper bound

This qualifier applies to any conditional-selection command that uses the "Greater than"
GT or "Greater than or equal to n" GE operators. The upper bound is often used to specify
a range for the following commands: gap() (drc), notch() (drc), spacing() (drc), width()
(drc) and single_clearance() (drc).

The fringe value is used as the upper bound value if this qualifier is not specified in a GT
or GE clearance test (see dveFringe under Preference File Format and Descriptions
(custom) in the Customization and Configuration (custom) documentation).

Example:

// bounded test

drc_error += dve_drc(gap(cond) > 2, DVE_RN_UPPER_BOUND, 7,
DVE_RN_TEMPLATE, DVE_RV_OPPOSITE, "2 < gap <= 7");

// use the fringe value

drc_error += dve_drc(gap(cond) > 2, DVE_RN_TEMPLATE,
DVE_RV_OPPOSITE, "2 < gap <= fringe");

61

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

DVE_RN_EDGE_ANGLES

Qualifier Resource Value:

DVE_RV_PARALLEL Select only parallel edges

DVE_RV_NOT_PARALLEL Select only non-parallel edges

DVE_RV_PERPENDICULAR Select only perpendicular edges

DVE_RV_NOT_PERPENDICULAR |Select only non-perpendicular edges

DVE_RV_ANY_ANGLE (default) Select edges at any
angle

© Note

DVE_RV_PARALLEL and DVE_RV_PERPENDICULAR are mutually exclusive.
DVE_RV_NOT_PARALLEL and DVE_RV_NOT_PERPENDICULAR are not mutually exclusive.

DVE_RN_ANGLE_TOLERANCE

Qualifier Resource Value:

<real value> |[Edge angle tolerance in
degrees

This qualifier can only be used in conjunction with RUL_RN_EDGE_ANGLES.

For example:

text += dve drc(external(cond2, cond) < 1.0,
"cond2 separation from cond < 1.0 um",
DVE_RN_EDGE_ANGLES, DVE_RV_NOT_PARALLEL,
DVE_RN_ANGLE_TOLERANCE, 10.0);

Using DVE_RN_ANGLE_TOLERANCE without specifying an angle qualifier will result in a
warning: qualifier ignored.

DVE_RN_POLARITY, DVE_RN_POLARITY_FROM,
DVE_RN_POLARITY_TO

Qualifier Resource Value:

DVE_RV_INDSIDE |Direct search toward inside of polygon
DVE_RV_OUTSIDE |(default) Direct search toward outside of polygon

DVE_RN_STRUCTURE

Qualifier Resource Value:

DVE_RV_ANY_POLYGON |(default) Test applies to any edge
DVE_RV_SAME_POLYGON [Test applies only between edge of same polygon
DVE_RV_DIFF_POLYGON |Test applies only between edge of different polygons

62

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
DVE_RN_SEPARATE

Determines how two adjacent edges are checked.

Qualifier Resource Value:

DVE_RV_SEPARATE applies only to non-intersecting edges
DVE_RV_NOT_SEPARATE |applies only to intersecting edges
DVE_RV_ANY_SEPARATE |applies to edges regardless of whether they intersect or not
DVE_RV_PERP_SEPARATE |applies only if two adjacent edges are not perpendicular
DVE_RV_JOIN_SEPARATE |applies only to non-intersecting edges, joining edges are added

in
DVE_RV_SEPARATE normally applies to a width or a notch test, so that an edge is not
checked against its immediate neighbors in a polygon

Examples

1. Consider some geometry with an acute angle and a rule to check the width of 100:

drcError = dve_drc(width(lyrEdges) < 100.0);

This rule fails to detect the error at the acute angle. Use the following rule
conjunction to address this problem:

// insert error segments onto the edges forming an acute angle

lyrEdges= dve_drc(corner_edges(lyrCond, 200.0, 0.1, 89.9));

// show the width which is in error. This can be done by applying a width
// check. Enable DVE_RV_ANY_SEPARATE, so that adjacent edges are checked.
drcError = dve_drc(width(lyrEdges) < 100.0, DVE_RN_SEPARATE,
DVE_RV_ANY_SEPARATE);

\ 100.0

2. See the command corner_edges() (drc) for an example with DVE_RV_SEPARATE.

DVE_RN_SLOPE, DVE_RN_SLOPE_FROM, DVE_RN_SLOPE_TO

Use a slope qualifier to activate a rule step only if it has a specified slope.
Qualifier Resource Value:

63

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
DVE_RV_VERTICAL Select only vertical edges
DVE_RV_HORIZONTAL |Select only horizontal edges
DVE_RV_ORTHOGONAL |Select only vertical and horizontal edges
DVE_RV_DIAGONAL Select only diagonal edges
DVE_RV_OCTAGONAL |Select only vertical, horizontal and diagonal edges

DVE_RV_OTHER Select only non-octagonal edges
DVE_RV_LEFT Select only the left edge
DVE_RV_BOTTOM Select only the bottom edge
DVE_RV_RIGHT Select only the right edge
DVE_RV_TOP Select only the top edge

DVE_RV_ALL_SLOPES |(default) Select edges at any slope

Examples

1. Consider a gap check which is applied only between vertical edges:

drcError= dve_drc(gap(lyrCond) < 35.0, DVE_RN_SLOPE, DVE_RV_VERTICAL);
2. Consider a gap check which is applied only between diagonal edges:

drcError= dve_drc(gap(lyrCond) < 35.0, DVE_RN_SLOPE, DVE_RV_DIAGONAL);
3. Consider a gap check which is applied only between orthogonal and diagonal edges:

NN
NN

drcError= dve_drc(gap(lyrCond) < 35.0, DVE_RN_SLOPE_FROM,
DVE_RV_ORTHOGONAL, DVE_RN_SLOPE_TO, DVE_RV_DIAGONAL);

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
DVE_RN_TOUCH

Qualifier Resource Value:

DVE_RV_DTOUCH Edges which touch are also diagnosed as errors. The error segment is constrained to
the touching edges.

DVE_RV_CLEAR_TOUCH Edges which touch are also diagnosed as errors. The error segment extends beyond
the touching edges.

DVE_RV_OVERLAP Edges which overlap are also diagnosed as errors.
Examples

1. Consider two polygons on layer lyrCond and lyrCond2 which touch externally and an
external rule:

drcError = dve_drc(external(lyrCond,lyrCond2) < 30.0, "d min is 30",
DVE_RN_EDGE_ANGLES, DVE_RV_PARALLEL);

The default is that butting edges are not diagnosed as errors. Now consider the use
of the qualifier DVE_RV_CLEAR_TOUCH:

drcError = dve_drc(external(lyrCond,lyrCond2) < 30.0, "d min is 30",
DVE_RN_EDGE_ANGLES, DVE_RV_PARALLEL, DVE_RN_TOUCH, DVE_RV_CLEAR_TOUCH);

Then the touching section is given as an error:

2. Consider some geometry on 2 layers and a nests rule:

drcError = dve_drc(nests(lyrCond2,1lyrCond) < 30.0, "d min is 30",
DVE_RN_EDGE_ANGLES, DVE_RV_PARALLEL);

lyrCond2 hrCond

drcError = dve_drc(nests(lyrCond2,lyrCond) < 30.0, "d min is 30",
DVE_RN_EDGE_ANGLES, DVE_RV_PARALLEL, DVE_RN_TOUCH, DVE_RV_OVERLAP);

detects violations of "nests" distance, and also diagnoses edges of polygons on layer
lyrCond2 which are outside of polygons on layer lyrCond1:

65

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Similarly,

drcError = dve_drc(external(lyrCond2,lyrCond) < 30.0, "d min is 30",
DVE_RN_EDGE_ANGLES, DVE_RV_PARALLEL, DVE_RN_TOUCH, DVE_RV_OVERLAP);

detects violations of "external" distance, and also diagnoses edges of polygons on
layer lyrCond2 which are inside of polygons on layer lyrCond1:

DVE_RN_TEMPLATE, DVE_RN_TEMPLATE_TO,
DVE_RN_TEMPLATE_FROM

Control over templates is very important. Most false errors or missed real errors can be
eliminated with carefully specified templates. The program starts with very pessimistic

templates, usually round ones, which may generate false errors. Specifying a particular
template may eliminate these errors.

How Clearance Templates are Applied

Clearance checks are done between edges of polygons, referred to as FROM and TO.

Clearance

Distance To

\ _""“A
Error segments with

From default template

A template is constructed around each FROM edge.

[A

FROM Segment

The program checks if this template captures a TO segment. If no edge crosses this
template, it is regarded as a "miss" between these FROM and TO segments, and no more
checks are made between them. Below is an example of a miss:

66

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

/ \ TO Segment

FROM Segment

But if there is a "hit" with a To segment, the program creates a provisional result segment
consisting of the parts of the TO edge which are within the FROM template.

/ \ provisional TO
result

FROM

Then the process is reversed and a template is constructed on the TO segment (not just
from the TO result segment), and the program checks to see if the template encloses a
FROM segment.

\

FROM

TO

/' provisional FROM result

If there is a hit on this second pass, the provisional segments are accepted for both the
FROM and the TO tests, and they are added as result segments.

/ \ \ TO result segment
/FHDM resul segment
Also, if this was the last rule of a conjunctive set, the program relates the new result error

segments. In this case, edges adjacent to those shown are also checked so the error
segments usually go around corners.

/ \ \ / TO result segment

FROM result segment

The length of the error segment around the corner acts as a visual clue to the severity of
the error.

Specifying a Template

A template for a rule is defined by specifying the shape that is applied for a concave
corner of the polygon and for a convex corner of the polygon.

Consider an edge that has a concave corner at one end, and a convex corner at the other
end:

67

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
l polarity
concave COMEX

carner carner

A concave corner subtends an angle of less than 180 degrees when looking from the edge
in the direction of the polarity. A convex corner subtends an angle of more than 180

degrees. If the polarity of the rule is reversed, then the concave and convex corners are
also reversed:

COMex
corner

concave
corner

The same template can be applied to both ends of the line. For example:

opposite template
conca Convex

corner corner

Or a different template can be specified for the concave corner and the convex corner:

opposite arc

COMVEN
corner corner

Types of Templates
The choices for each end of the edge are:

« round - Extend search area using rounded corners
search area

‘ edge

» opposite - (default) Extend search area just opposite the edge

68

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

« arc - Extend search area using arced corners. Refer to note below.

-
2
: |
o

The Arc template requires a curvature angle. Curvature is expressed as the angle (in degrees) by
which the arc is raised. An Arc with a curvature angle of 0 degrees is equivalent to the "round"
template; and Arc with a curvature angle of 90 degrees is equivalent to the "opposite" template.

 square - Extend search area treating corners as squares

or for checking both sides of a line, the template
« bothsides - Must be used for both convex and concave corners. Extend search area
on both sides of edge. Use this template with the polarity DVE_RN_POLARITY

Specify whether the template is to be used for the FROM segment, the TO segment
or both segments. Refer, to How Clearance Templates are Applied for the definition of
FROM and TO and refer to Specifying a Template for the definition of concave and
convex corners.

Qualifier Resource Values:

DVE_RV_ROUND DVE_RV_ARC
DVE_RV_ROUND_ARC DVE_RV_ARC_OPPOSITE
DVE_RV_ROUND_OPPOSITE |DVE_RV_ARC_ROUND
DVE_RV_ROUND_SQUARE DVE_RV_ARC_SQUARE
DVE_RV_OPPOSITE DVE_RV_SQUARE
DVE_RV_OPPOSITE_ARC DVE_RV_SQUARE_ARC
DVE_RV_OPPOSITE_ROUND |DVE_RV_SQUARE_OPPOSITE
DVE_RV_OPPOSITE_SQUARE DVE_RV_SQUARE_ROUND
DVE_RV_BOTHSIDES

Edge Selection Based on Corners

Edge Selection Based on Corners selection function includes: corner_edges() (drc).

external()

Measures the distance between outside edges of polygons of different layers.

See also: dve_drc() (drc)

Syntax
69

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

dve_drc (external (inLayerl, inLayer2) operator distance [, msgString]
[, qualifierName, qualifiervValue...]);

where:
inLayer1 Containing polygon layer
inLayer2 Contained polygon layer
operator < Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to
distance A distance value in layout units
msgString A string value that will be attached to the selected error segments

qualifierName, qualifierValue |/A name, value pair that qualifies the selection

Edge Qualifiers

DVE_RN_EDGE_ANGLES (drc)

DVE _RN_ANGLE_TOLERANCE (drc)

DVE _RN_SEPARATE (drc)

DVE_RN_TOUCH (drc)

DVE_RN_SLOPE, DVE_RN_SLOPE_FROM, DVE_RN_SLOPE_TO (drc)

DVE _RN_TEMPLATE, DVE_RN_TEMPLATE_TO, DVE_RN_TEMPLATE_FROM (drc)
DVE_RN_UPPER_BOUND (drc)

Example

decl lyrCond = dve_import_layer ("cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error");

drcError += dve_drc (external (lyrCond, lyrCond2) < 4.0,
"Outside edges of metal layers < 4.0",
DVE_RN_EDGE_ANGLES, DVE_RV_PARALLEL);

cond2
No Check
Check Between
Parallel Edges
cond?2

70

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

gap()

Measures the distance between outside edges of different polygons of the same layer.

See also: dve_drc() (drc)

Syntax

dve_drc (gap (inLayer) operator distance [, msgString]
[,qualifierName, qualifierValue...]);

where:
inLayer A polygon layer
operator < Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to
distance A distance value in layout units
msgString A string value that will be attached to the selected error segments

qualifierName, qualifierValue A name, value pair that qualifies the selection

Edge Qualifiers

DVE_RN_EDGE_ANGLES (drc)

DVE_RN_ANGLE_TOLERANCE (drc)

DVE_RN_SEPARATE (drc)

DVE_RN_TOUCH (drc)

DVE_RN_SLOPE, DVE_RN_SLOPE_FROM, DVE_RN_SLOPE_TO (drc)
DVE_RN_TEMPLATE, DVE_RN_TEMPLATE_TO, DVE_RN_TEMPLATE_FROM (drc)
DVE_RN_UPPER_BOUND (drc)

Examples

1. Checking gap between edges

decl lyr_cond = dve_import_layer("cond");

decl lyr_error = dve_export_layer(101);

lyr_error += dve_drc(gap(lyr_cond) < 15.00,
"Gap of layer cond < 15.0");

71

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Gap less than 15

Checking between parallel edges

decl lyr_cond = dve_import_layer("cond");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc(gap(lyr_cond) < 15.00,
"Gap of layer cond < 15.0",
DVE_RN_EDGE_ANGLES,DVE_RV_PARALLEL);

Error flagged only for
parallel edges

Checking between horizontally aligned edges

decl lyr_cond = dve_import_layer("cond");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc(gap(lyr_cond) < 15.00,
"Gap of layer cond < 15.0",
DVE_RN_SLOPE,DVE_RV_HORIZONTAL);

72

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Check ONLY between

Horizontal edges

||6|Likewise use a slope qualifier (drc) to activate a rule step only if it has a specified slope

internal()

Measures clearance from the inside of one edge of a polygon to the inside of another edge
of a different polygon.

See also: dve_drc() (drc)

Syntax

dve_drc (internal (inLayerl, inLayer2) operator distance [, msgString]
[,qualifierName, qualifierValue...]);

where:
|inLayer1 |Containing polygon layer
|inLayer2 |Contained polygon layer
operator < Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to
|distance |A distance value in layout units
|msgString |A string value that will be attached to the selected error segments
|qua/iﬁerName, qualifierValue |A name, value pair that qualifies the selection

Edge Qualifiers

DVE_RN_EDGE_ANGLES (drc)
DVE RN_ANGLE TOLERANCE (drc)

73

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
DVE_RN_SEPARATE (drc)
DVE_RN_TOUCH (drc)
DVE_RN_SLOPE, DVE_RN_SLOPE_FROM, DVE_RN_SLOPE_TO (drc)
DVE_RN_TEMPLATE, DVE_RN_TEMPLATE_TO, DVE_RN_TEMPLATE_FROM (drc)
DVE_RN_UPPER_BOUND (drc)

Example

decl lyrCond = dve_import_layer ("cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error'");

drcError += dve_drc (internal (lyrCond, lyrCond2) < 4.0,
"Inside edges < 4.0");

b4

cond?

nests()

Measures enclosure distance from the outside of the contained polygon to the inside of the
containing polygon.

See also: dve_drc() (drc)

Syntax

dve_drc (nests (inLayerl, inLayer2) operator distance
[, msgString] [,qualifierName, qualifierValue...]);

where:
inLayer1 Contained polygon layer
inLayer2 Containing polygon layer
operator < Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to
distance A distance value in layout units
msgString A string value that will be attached to the selected error segments

qualifierName, qualifierValue A name, value pair that qualifies the selection

74

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
Edge Qualifiers

DVE_RN_EDGE_ANGLES (drc)

DVE_RN_ANGLE_TOLERANCE (drc)

DVE_RN_SEPARATE (drc)

DVE_RN_TOUCH (drc)

DVE_RN_SLOPE, DVE_RN_SLOPE_FROM, DVE_RN_SLOPE_TO (drc)
DVE_RN_TEMPLATE, DVE_RN_TEMPLATE_TO, DVE_RN_TEMPLATE_FROM (drc)
DVE_RN_UPPER_BOUND (drc)

The nests() command checks the similar edges that are checked by the contains() (drc) command. The
only difference between them being the order of layers passed.

F

Examples

decl lyr_cond = dve_import_layer("cond");
decl lyr_cond2 = dve_import_layer("cond2");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc (nests (lyr_cond, lyr_cond2) < 3.0,
"Casel : Clearance from contained to containing layers < 3.0");
lyr_error += dve_drc (nests (lyr_cond2, lyr_cond) < 3.0,
"Case2 : Clearance from contained to containing layers < 3.0");

Casel : cond is the contained layer Case2 : cond? is the contained layer
cond?
e > cond <>

® The order of the layers is important while using the nests() command. First layer is the contained layer
and second layer is the containing layer.
By default, the intersecting edges are also checked. To ignore it, use the qualifier DVE_RN_SEPARATE
(drc) with the resource value 'DVE_RV_SEPARATE'

Default checking,

decl lyr_cond = dve_import_layer("cond");

decl lyr_cond2 = dve_import_layer("cond2");

decl lyr_error = dve_export_layer(101);

lyr_error += dve_drc (nests (lyr_cond2, lyr_cond) < 3.0,
"Clearance from contained to containing layers < 3.0",

)3

75

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

By default, intersecting edges are also checked

Using DVE_RN_SEPARATE (drc) qualifier,

decl lyr_cond = dve_import_layer("cond");

decl lyr_cond2 = dve_import_layer("cond2");

decl lyr_error = dve_export_layer(101);

lyr_error += dve_drc (nests (lyr_cond2, lyr_cond) < 3.0,
"Clearance from contained to containing layers < 3.0",
DVE_RN_SEPARATE ,DVE_RV_SEPARATE) ;

Intersecting edges are ignored

76

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

" |Note
The nests() command will also check on the edges even when the two different layers' polygons are not
included in each other if the clearance distance satisfies the constraint, which is, 'from Outside Edge of
First Layer to Inside Edge of Second Layer'. A user may see this behavior as a false error but actually
the DRC engine is flagging the error when the constraint is satisfied. The DRC engine will not check which
is a containing or a contained layer.

From Outside Edge of First layer to Inside Edge of Second layer

@ Tip

To avoid a situation as shown above, declare a work layer which has a Boolean AND operation of the two
layers in consideration. The code may be modified as:

decl lyr_cond = dve_import_layer("cond");

decl lyr_cond2 = dve_import_layer("cond2");

decl lyr_error = dve_export_layer(101);

decl temp1l = dve_bool_and(lyr_cond2,lyr_cond);

lyr_error += dve_drc (nests (temp1, lyr_cond) < 3.0,

"Clearance from contained to containing layers < 3.0",

DVE_RN_SEPARATE,DVE_RV_SEPARATE);

notch()

Measures the distance between outside edges of the same polygon on the given layer.

See also: dve_drc() (drc)

Syntax

dve_drc (notch (inLayer) operator distance [, msgString]
[,qualifierName, qualifierValue...]);

where:

77

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

\inLayer \A polygon layer
operator < Less than
<= Less than or equal to
== Equal to

> Greater than
>= Greater than or equal to

\distance \A distance value in layout units

\msgString \A string value that will be attached to the selected error segments

\qua/ifierName, qualifierValue \A name, value pair that qualifies the selection

Edge Qualifiers

DVE_RN_EDGE_ANGLES (drc)

DVE_RN_ANGLE_TOLERANCE (drc)

DVE_RN_SEPARATE (drc)

DVE_RN_TOUCH (drc)

DVE_RN_SLOPE, DVE_RN_SLOPE_FROM, DVE_RN_SLOPE_TO (drc)
DVE_RN_TEMPLATE, DVE_RN_TEMPLATE_TO, DVE_RN_TEMPLATE_FROM (drc)
DVE_RN_UPPER_BOUND (drc)

Examples

1. Checking notch between edges

decl lyr_cond = dve_import_layer("cond");

decl lyr_error = dve_export_layer(101);

lyr_error += dve_drc(notch(lyr_cond) < 3.00,
"Outside edges same polygon < 3.0");

separate edges
same polygon
notch less than

No Check
here on adjacent edges

||6|By default notch() will check on the separate edges

Checking notch between parallel edges

decl lyr_cond = dve_import_layer("cond");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc(notch(lyr_cond) < 3.00,

78

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
"Outside edges same polygon < 3.0",
DVE_RN_EDGE_ANGLES,DVE_RV_PARALLEL);

OLY on par
edges

Checking notch between non perpendicular adjacent edges

decl lyr_cond = dve_import_layer("cond");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc(notch(lyr_cond) < 3.00,
"Outside edges same polygon < 3.0",
DVE_RN_EDGE_ANGLES,DVE_RV_NOT_PERPENDICULAR,
DVE_RN_SEPARATE,DVE_RV_NOT_SEPARATE);

Non-perpendicular adjacent
edgeslessthan 3

off_grid()
Flags edges whose end points fall off a specified grid.

See also: dve_drc() (drc)

Syntax
79

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
dve_drc (off_grid (inLayer, grid) [,msgString]);

where:

inLayer |A polygon layer
grid A specified grid
msgString |A string value that will be attached to the selected error segments

Example

decl lyrCond = dve_import_layer ("cond");

decl drcError = dve_export_layer ("ads_drc_error'");

drcError += dve_drc (off_grid (lyrCond, 0.5),
"Conductive metal is off grid");

Edge Compensation

Edge Compensation selection function includes: compensate() (drc), and dve_segsize()
(drc).

single_clearance()

Measures the distance between edges of polygons on the same layer.

See also: dve_drc() (drc)

Syntax

dve_drc (single_clearance (inLayer) operator distance [, msgString]
[,qualifierName, qualifierValue...]);

where:
inLayer A polygon layer
operator < Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to
distance A distance value in layout units
msgString A string value that will be attached to the selected error segments

qualifierName, qualifierValue A name, value pair that qualifies the selection

Edge Qualifiers

DVE_RN_POLARITY, DVE_RN_POLARITY FROM, DVE_RN_POLARITY TO (drc)
DVE_RN_STRUCTURE (drc)
DVE_RN_EDGE_ANGLES (drc)

80

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
DVE_RN_ANGLE_TOLERANCE (drc)
DVE_RN_SEPARATE (drc)
DVE_RN_TOUCH (drc)
DVE_RN_SLOPE, DVE_RN_SLOPE_FROM, DVE_RN_SLOPE_TO (drc)
DVE_RN_TEMPLATE, DVE_RN_TEMPLATE_TO, DVE_RN_TEMPLATE_FROM (drc)
DVE_RN_UPPER_BOUND (drc)

Examples

1. Single clearance check without any Edge Qualifier (drc).

decl lyr_cond = dve_import_layer("cond");

decl lyr_error = dve_export_layer(101);

lyr_error += dve_drc(single_clearance(lyr_cond) < 15.00,
"Clearance of layer cond edges < 15.0");

Outside Edges
Same Polygon Outside Edges Different Polygons

||6|By default, single_clearance() will check on the outside edges of same and different polygons

Single clearance check on Non-Adjoining edges.

decl lyr_cond = dve_import_layer("cond");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc(single_clearance(lyr_cond) < 15.00,
"Clearance of layer cond non-adjoining edges < 15.0",
DVE_RN_SEPARATE ,DVE_RV_SEPARATE) ;

81

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

/

Check on separate edges that
are not adjoining

Single clearance check on parallel edges.

decl lyr_cond = dve_import_layer("cond");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc(single_clearance(lyr_cond) < 15.00,
"Clearance of layer cond parallel edges < 15.0",
DVE_RN_EDGE_ANGLES,DVE_RV_PARALLEL);

Checks only on
Parallel Edges

e
F

No Check

Single clearance check on Inside edges of Same or Different Polygons that are parallel.

decl lyr_cond = dve_import_layer("cond");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc(single_clearance(lyr_cond) < 15.00,
"Clearance of layer cond inside edges < 15.0",
DVE_RN_EDGE_ANGLES,DVE_RV_PARALLEL,
DVE_RN_POLARITY,DVE_RV_INSIDE);

82

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Parallel Inside Edges of same and different polygons

Single clearance check between edges ONLY of different polygons.

decl lyr_cond = dve_import_layer("cond");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc(single_clearance(lyr_cond) < 15.00,
"Clearance of layer cond different polygon edges < 15.0",
DVE_RN_STRUCTURE ,DVE_RV_DIFF_POLYGON) ;

No Check here

Check on edges of
different polygons

spacing()

Simultaneously measures the distance between outside edges of different polygons of the
same layer (gap) and outside edges of the same polygon (notch).

See also: dve_drc() (drc)

Syntax

dve_drc (spacing (inLayer) operator distance [, msgString]
[,qualifierName, qualifierValue...]);

where:

83

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

|inLayer |A polygon layer
operator < Less than
<= Less than or equal to
== Equal to
> Greater than
|distance |A distance value in layout units
|msg5tring |A string value that will be attached to the selected error segments

|qua/iﬁerName, qualifierValue |A name, value pair that qualifies the selection

Edge Qualifiers

DVE_RN_EDGE_ANGLES (drc)
DVE_RN_ANGLE_TOLERANCE (drc)

DVE_RN_SEPARATE (drc)

DVE_RN_TOUCH (drc)

DVE_RN_SLOPE, DVE_RN_SLOPE_FROM, DVE_RN_SLOPE_TO (drc)
DVE_RN_TEMPLATE, DVE_RN_TEMPLATE TO, DVE_RN_TEMPLATE FROM (drc)
DVE_RN_UPPER_BOUND (drc)

Examples

1. Spacing check will include the notch and the gap checks.

decl lyr_cond = dve_import_layer("cond");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc(spacing(lyr_cond) < 3.00,
"Outside edges of same and different polygons < 3.0");

||6|By default spacing() will check on the separate edges

84

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Spacing check between parallel edges.

decl lyr_cond = dve_import_layer("cond");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc(spacing(lyr_cond) < 3.00,
"Outside edges of same and different polygons < 3.0",
DVE_RN_EDGE_ANGLES,DVE_RV_PARALLEL);

Check ONLY on Parallel Edges

Spacing check between horizontally aligned edges.

decl lyr_cond = dve_import_layer("cond");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc(spacing(lyr_cond) < 3.00,
"Outside edges of same and different polygons < 3.0",
DVE_RN_SLOPE,DVE_RV_HORIZONTAL);

85

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Check ONLY on Horizontal
Edges

||6|Likewise use a slope qualifier (drc) to activate a rule step only if it has a specified slope

width()

A DRC clearance function to check from the inside of one edge of a polygon to the inside
of another edge of the same polygon.

See also: dve_drc() (drc)

Syntax

dve_drc (width (inLayer) operator distance [, msgString] [, qualifierName, qualifierValue,

- 1);

where:
|inLayer A polygon layer
operator < Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to n
|distance |A distance value in layout units
|msgString |A string value that will be attached to the selected error segments
|qua/iﬁerName, qualifierValue |A name, value pair that qualifies the selection

Edge Qualifiers

86

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
DVE_RN_EDGE_ANGLES (drc)
DVE_RN_ANGLE_TOLERANCE (drc)
DVE_RN_SEPARATE (drc)
DVE_RN_TOUCH (drc)
DVE_RN_SLOPE, DVE_RN_SLOPE_FROM, DVE_RN_SLOPE_TO (drc)
DVE_RN_TEMPLATE, DVE_RN_TEMPLATE_TO, DVE_RN_TEMPLATE_FROM (drc)
DVE_RN_UPPER_BOUND (drc)

Example

1. Checking width of layer

decl lyr_cond = dve_import_layer("cond");

decl lyr_error = dve_export_layer(101);

lyr_error += dve_drc(width(lyr_cond) < 3.00,
"Width of layer cond < 3.0");

2. Checking on parallel edges

decl lyr_cond = dve_import_layer("cond");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc(width(lyr_cond) < 3.00,
"Width of layer cond < 3.0",
DVE_RN_EDGE_ANGLES,DVE_RV_PARALLEL);

3. Checking on separate edges

decl lyr_cond = dve_import_layer("cond");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc(width(lyr_cond) < 3.00,
"Width of layer cond < 3.0",
DVE_RN_SEPARATE ,DVE_RV_SEPARATE) ;

87

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

||6|By default width() will check on the separate edges

4. Checking on vertically aligned edges

decl lyr_cond = dve_import_layer("cond");
decl lyr_error = dve_export_layer(101);
lyr_error += dve_drc(width(lyr_cond) < 3.00,
"Width of layer cond < 3.0",
DVE_RN_SLOPE,DVE_RV_VERTICAL);

™ Checks ONLY on vertical edges

||6|Likewise use a slope qualifier (drc) to activate a rule step only if it has a specified slope

88

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

DRC Layer Management Commands

This section describes the DRC Layer Management commands used to import and export
layers.

dve_import_text_layer() (drc)
dve export layer() (drc)

dve identify cell layer() (drc)
dve import cell layer() (drc)

e dve import layer() (drc)

dve_import_text_layer()

This command is useful for selecting polygons based on whether they contain certain text.
It copies the layer data of texts into an import layer that can be used in a rule command
and returns an import layer.

See also: dve_export_layer() (drc), dve import layer() (drc)

Syntax
inputLayer = dve_import_text_layer (textstring);
where:

textstring is a string literal that is present in the design in the form of ADS Text

Example

decl lyrText = dve_import_text_layer ("ENG");

decl lyrGate = dve_import_layer("t_Gate");

decl lyrErr101 = dve_export_layer(101);

decl lyrPoly = dve_drc(poly_inter_layer(lyrGate,
lyrText),DVE_RN_INTER_SELECT,DVE_RV_ACCEPT,DVE_RN_INTER_CODE, DVE RV_ENCLOSE);
1lyrErr101 += dve_drc(all_edges(lyrPoly),"Excluded due to ENG marker");

*——— Edges of t_Gate iz highlighted
as the bounding box of

ENG “EMGET 12 contained

completely inside t_Gate

+— Zince “ENG” iz not

completely inside t Gate, it 15
BRI not highlighted as per given
the rules written abowe

© Note
The string literal matching is exact and case sensitive. For example, if the design contains text as
"ENGLISH", it will be not be considered/included in the dve_import_text_layer rule operation.

89

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

dve_export_layer()

Used to export DRC error information. Data written to an export layer will be directly
exported back to the layout editor. Returns an export layer.

See also: dve_import_layer() (drc), dve import cell layer() (drc)

Syntax
exportLayer = dve_export_layer (layerld);
where:

layerld |is the string layer name or integer layer number of an existing design layer

Example

// Import layers

decl lyrCond = dve_import_layer ("cond");

decl lyrCond2 = dve_import_layer ("cond2");

// Export layers

decl drcError = dve_export_layer ("ads_drc_error");

decl lyrError102 = dve_export_layer ("error102");

// Work layer

decl lyrOverlap = NULL;

// Export DRC error directly to an export layer

drcError += dve_drc (width (lyrCond) < 4.0, "Metal width less than 4.0");
lyrOverlap = dve_bool_and (lyrCond, lyrCond2);

lyrError102 += dve_drc (all_edges (lyrOverlap), "Metal layers overlap");

dve_identify_cell_layer()
Processes the design layers prior to input into the DRC engine. Uses a AEL callback
function for doing the customization in identification steps. Returns reference to the layer

returned by the callback function. If nothing is returned from the callback function, a
rules-compilation error is displayed.

See also: dve_export_layer() (drc), dve_import_layer() (drc)

Syntax

decl drc_layA = dve_identify_cell_layer("DEVICE_TYPE1", "layA", "DEV1_Identify_cb");
where:

DEVICE_TYPE1 device name that needs to be identified. A string value.

layA layer name or layer number. A string or an integer
value.

DEV1_Identify_cb |Callback to identify the device. A string value.

90

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
Example 1

Callback definition AEL file:

defun identify_cond_layer_of_devl_cb(devl, layerId)

{
de_add_layer("drc_DevRec",100,100,100,1,10,0,2,0,1,"*" 1);
// use any AEL layer manipulation routines to manipulate drc_DevRec layer
return 100; // the drc_DevRec layer

}

DRC Rules file:

decl drc_cond = dve_identify_cell layer("DEV1", '"cond", "identify_cond_layer_of_devli_cb");
decl drc_error = dve_export_layer(101);
drc_error += dve_drc(poly_area(drc_cond) > 100.0));

dve_import_cell_layer()

Used to get design data from the layout editor into the design verification process. Copies
instance artwork from the layout editor onto an import layer that can be used in a rule
command. Returns an import layer.

© Note
dve_import_cell_layer can not be used on components with a sub-circuit.

See also: dve_export_layer() (drc), dve_import_layer() (drc)

Syntax
inputLayer = dve_import_cell_layer (layerld, cellName [, callBack]);

where:

layerId |is the string layer name or integer layer number of an existing design
layer

cellName |is the name of the component or "*"
callBack |is the name of the component selection callback

Example 1

decl lyrCond = dve_import_cell_layer ("cond", "MLIN");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error");

decl lyrPoly = dve_bool_and (lyrCond, lyrCond2);

drcError += dve_drc (all_edges (lyrPoly), "MLIN overlapping cond2");

Example 2

decl lyrCond = dve_import_cell_layer ("cond", "*");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error");

decl lyrPoly = dve_bool_and (lyrCond, lyrCond2);

drcError += dve_drc (all_edges (lyrPoly), "Component cond metal overlapping cond2");

Example 3
91

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

defun myprocess_MLIN_cb(instH, layerId, cellName)

{

// Add selection criteria

// Return true if this instance of component MLIN should be included in the cell layer
return TRUE;

}

decl lyrCond = dve_import_cell layer ("cond", "MLIN", "myprocess_MLIN_cb");
decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error");

decl lyrPoly = dve_bool_and (lyrCond, lyrCond2);

drcError += dve_drc (all_edges (lyrPoly), "MLIN overlapping cond2");

dve_import_layer()

Used to get design data from the layout editor into the design verification process. Copies
layer data from the layout editor onto an import layer that can be used in a rule
command. Returns an import layer.

See also: dve_export_layer() (drc), dve import cell layer() (drc)

Syntax
inputLayer = dve_import_layer (layerld[,purpose]);
where:

layerId |is the string layer name or integer layer number of an existing design layer

purpose |is an optional string or integer argument specifying the purpose of the above layerld

If purpose is not specified, the DRC will pick up shapes of all purposes belonging to /layerld
. The second argument thus provides an additional level of filtering of shapes belonging to
a particular layerId.

Example

decl lyrCond = dve_import_layer ("cond");

decl lyrResiFill = dve_import_layer("resi","fill");

decl drcError = dve_export_layer ("ads_drc_error");

drcError += dve_drc (width (lyrCond) < 4.0, "Metal width less than 4.0");
drcError += dve_drc (width (lyrResifFill) < 6.0, "Resi:Fill width less than 6.0");

92

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Macros

This section describes macros. Two macros that are currently defined are:
e intrusion() (drc)

e protrusion() (drc)

intrusion()

Checks the intrusion of BOTTOM layer into TOP layer (see Convention for TOP and
BOTTOM layers (drc)).

Syntax
errorLayer = dve_drc (intrusion (inLayerl, inLayer2) operator distance [,msgString]);

where:

errorLayer Layer with error segments
inLayer1l |Polygon TOP layer
inLayer2 |Polygon BOTTOM layer

operator |< Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to

distance |A distance value in layout units
msgString A string value that will be attached to the error segments

Method

decl mergeCGate = dve_bool_and(inLayer2, inLayerl);

decl selectGate = dve_drc (poly_edge code (mergeGate),DVE_RN_EDGE_SELECT,

DVE_RV_ACCEPT_ANY, DVE_RN_PATH_CODE, DVE_RV_BIT);

decl overlapGate = dve_bool_and (selectGate, inlLayer2);

decl notGate = dve_bool_not (inLayerl, overlapGate);

errorLayer = dve_drc(double_clearance(overlapGate, notGate)
@operator @distance, @msgString,
DVE_RN_POLARITY_FROM, DVE_RV_INSIDE,
DVE_RN_POLARITY_TO, DVE_RV_OUTSIDE,
DVE_RN_TEMPLATE, DVE_RV_OPPOSITE,
DVE_RN_SEPARATE, DVE RV_SEPARATE);

Example

decl lyrCond = dve_import_layer("cond");

decl lyrCond2 dve_import_layer("cond2");

decl drcError = dve_export_layer("ads_drc_error");
drcError = dve_drc (intrusion (lyrCond2,lyrCond) <= 2.0);

93

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

intrusion < 2.0

cond2

protrusion()

Checks the extension of TOP layer out of BOTTOM layer (see Convention for TOP and
BOTTOM layers (drc)).

Syntax
errorLayer = dve_drc (protrusion (inLayerl, inLayer2) operator distance [,msgString]);

where:

errorLayer Layer with error segments
inLayerl |Polygon TOP layer
inLayer2 |Polygon BOTTOM layer

operator |< Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to

distance |A distance value in layout units
msgString A string value that will be attached to the error segments

Method

decl gatePoly = dve_drc (poly_inter_layer (inLayerl, inlLayer2),

DVE_RN_INTER_CODE, DVE_RV_CUT);

decl proGatePoly = dve_bool_not (gatePoly, inLayer2);

errorLayer += dve_drc (double_clearance (proGatePoly, inlLayer2)
@Qoperator @distance,@msgString,
DVE_RN_POLARITY_FROM, DVE_RV_INSIDE,
DVE_RN_POLARITY_TO, DVE_RV_OUTSIDE,
DVE_RN_TEMPLATE, DVE_RV_OPPOSITE,
DVE_RN_SEPARATE, DVE_RV_SEPARATE);

Example

decl lyrCond = dve_import_layer("cond");

decl lyrCond2 = dve_import_layer("cond2");

decl drcError = dve_export_layer("ads_drc_error");
drcError = dve_drc (protrusion (lyrCond, lyrCond2) <= 2);

94

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

/

protrusion < 2.0

cond2

95

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
Merge Operations on Polygons
This section describes boolean operations on polygons:
e dve_bool_and() (drc)
e dve_bool_not() (drc)
e dve_bool_or() (drc)
and the commands for combining layers.
e dve_merge() (drc)
e dve_self() (drc)

« dve_self_merge() (drc)

dve_bool_and()

Merges overlapping polygons on two given layers. Returns: A polygon layer.

Syntax
dve_bool_and (inLayerl, inLayer2);
where:

inLayer1, InLayer2 A polygon layer

Example

decl lyrCond = dve_import_layer ("cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error");

decl lyrPoly = NULL;

lyrPoly = dve_bool_and (lyrCond, lyrCond2);

drcError += dve_drc (all_edges (lyrPoly), "Conductive metal overlapping");

cond2 IlyrPoly = dve_bool_and ("cond", "cond2")
cond2
BiFuly lyrPoly
cond

96

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

dve_bool_not()

Subtracts shapes in the second layer from shapes in the first layer. Returns: A polygon
layer.

Syntax

dve_bool_not (inLayerl, inLayer2);

where:

inLayer1, InLayer2 |A polygon layer

Example

decl lyrCond = dve_import_layer ('"cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error");

decl lyrPoly = NULL;

lyrPoly = dve_bool_not (lyrCond, lyrCond2);

drcError += dve_drc (all_edges (lyrPoly),
"Conductive metal not overlapping");

lyrPoly = dve_bool_not (lyrCond2, lyrCond);

drcError += dve_drc (all_edges (lyrPoly),
"Conductive metal not overlapping");

dve_boo|_not(lyrCond, lyrCond2) dve_boal_natilyrCond2, lyrCond)

Notice that in the second example the polygon 4 on the layer 'cond' creates a hole.

dve_bool_or()

Merges overlapping shapes on a given layer. Returns: A polygon layer.

Syntax
outLayer = dve_bool_or (inLayerl [, inLayer2]);
where:

97

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
inLayer1, InLayer2 |A polygon layer

Example

decl lyrCond = dve_import_layer ("cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error');

decl lyrPoly = NULL;

lyrPoly = dve_bool_or (lyrCond, lyrCond2);

drcError += dve_drc (width (lyrPoly) < 3.0,
"Conductive metal less than 3.0");

dve_merge()

Collects layers into one layer without modifying the shapes. Results of a combine
operation can be used for performing merges, boolean operations and sizing operations. It
is important to note that no merge or boolean operations are performed in the process.
Returns: a polygon layer.

Syntax
dve_merge (inLayerl [, inLayer2, . . ., inLayerN])
where:

inLayerl, InLayer2, inLayerN A polygon layer that is not the result of a dve_merge

Example

decl lyrCond = dve_import_layer ('"cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl lyrDiel = dve_import_layer ("diel");

decl drcError = dve_export_layer ("ads_drc_error'");

decl lyrMerge = NULL;

lyrMerge = dve_merge (lyrCond, lyrCond2, lyrDiel);

drcError += dve_drc (corner_edges (lyrMerge, 1.5, 90.5, 360.0),
"Concave corner edges");

98

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

dve_self()

Merge shapes to eliminate overlaps. Returns: a polygon layer.

Syntax
dve_self(inLayer)
where:

inLayer1, InLayer2 |A polygon
layer

Example

decl lyrCond = dve_import_layer("cond");

decl drcError = dve_export_layer("ads_drc_error");
decl lyrCondMerged NULL ;

decl lyrCondMerged = dve_self(lyrCond);

drcError += dve_drc(all_edges(lyrCondMerged));

O Note
Polygons 1 and 2 are merged.

dve_self_merge()
Merge shapes on the first specified layer and move them to the TOP level, collect shapes
on the second specified layer and move them to the BOTTOM level (see Convention for
TOP and BOTTOM layers (drc)). This command is particularly useful when used with

polygon selection commands (see Polygon Selection Based on Merge Properties (drc)).
Returns : A polygon layer.

Syntax
dve_self_merge (inLayerl, inLayer2)

where:

99

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

inLayer1, InLayer2 |A polygon
layer

Example

decl lyrCond = dve_import_layer ("cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error");

decl lyrPolyMerge = NULL;

decl lyrPolyl = NULL;

lyrPolyMerge = dve_self_merge (lyrCond2, lyrCond);

lyrPolyl = dve_drc (poly_edge_code (lyrPolyMerge),
DVE_RN_EDGE_SELECT, DVE_RV_ACCEPT_ ALL,
DVE_RN_PATH_CODE, DVE_RV_TOP);

drcError += dve_drc (all_edges (lyrPolyl),
"Conductive metal outside");

lyrPolyl = dve_drc (poly_edge_code (lyrPolyMerge),
DVE_RN_EDGE_SELECT, DVE_RV_ACCEPT_ALL,
DVE_RN_PATH_CODE, DVE_RV_TIB);

drcError += dve_drc (all_edges (lyrPolyl),
"Conductive metal inside");

conductive metal outside conductive metal inside

Example for Performing Boolean Operations

Boolean operations will be illustrated by the following example. Several polygons are
placed on layer 'cond' (1,2,3,4). One polygon is placed on layer 'cond2' (5).

© Note
Polygon1 butts against polygon 2 on the same layer, and polygon 2 butts against the outside of polygon 5
on a different layer.

100

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Operations for Polygon Extraction from
Edges

This section describes the DRC command used for polyextraction from edges. These
functions include:

e dve_plgout() (drc)

e dve_quadout() (drc)

dve_plgout()

Extracts entire polygons from selected edges. If any section of a polygon is in error, then
the entire polygon is extracted. Returns: A polygon layer.

See also: dve_quadout() (drc)

Syntax

dve_plgout (edgelLayer);
where:

edgelLayer A layer containing selected edge segments. Edge segments are selected using the dve_drc
command

Example

decl lyrCond = dve_import_layer ("cond");

decl drcError = dve_export_layer ("ads_drc_error'");

decl lyrtdgesl NULL ;

decl lyrEdges?2 NULL ;

decl lyrEdges3 = NULL;

decl lyrPolyInterconnect = NULL;

//Identify sections of interconnect metal w/width >=2.0 and width <= 3.0

lyrtdgesl = dve_drc (width (lyrCond) < 2.0);

lyrEdges2 = dve_drc (invert_edges (lyrEdges1));

lyreEdges3 = dve_drc (width (lyrEdges2) < 3.0);

lyrPolyInterconnect = dve_plgout (lyrEdges3);

drcError += dve_drc (all_edges (lyrPolyInterconnect),
"Valid interconnect");

dve_quadout()

Extracts a quadrilateral from the selected error segments on the given layer. Returns: A
polygon layer.

See also: dve_plgout() (drc)

101

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
Syntax

dve_quadout (edgelayer);

where:

edgelayer |A layer containing selected edge segments. Edge segments are selected using the dve_drc
command

Example 1

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error'");

decl lyrEdges = NULL;

decl lyrPoly = NULL;

decl lyrPolySmall = NULL;

lyrEdges = dve_drc (width (lyrCond2) < 3.0,
DVE_RN_EDGE_ANGLES, DVE_RV_PARALLEL,
DVE_RN_TEMPLATE, DVE_RV_OPPOSITE);

lyrPoly = dve_quadout (lyrEdges);

lyrPolySmall = dve_drc (poly_line_length (lyrPoly) < 4.0,
DVE_RN_LINE_LENGTH, DVE_RV_MAX_LINE);

drcError += dve_drc (all_edges (lyrPolySmall),
"Conductive metal length less than 4.0");

Example 2 - Geometric Compensation

In general, there are three main tools for doing geometric compensation that can be used
in isolation or in combination:

« Use the size/undersize operators to play geometric tricks

« Use a DRC clearance rule with the quadout option to extract the space between two
edges as a polygon

o Use any DRC rules to develop error segments, and then use the compensate
command to add to or subtract from the polygon.

The following MOS problem demonstrates the use of the size/undersize and quadout
operations.

0.5 lLm shrink -
original poly
2 lLm extension
diff
1 lLm step
[—
new poly

102

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
The rules specify the following actions:

« Compensate the channel by pulling in the source/drain by 0.5 pm.

o If there is a small lead-away of poly (as shown at the top of the figure), maintain a 2
Mm extension at the new shrunk length.

« If there is a big lead-away of poly (as shown at the bottom of the figure), step the
poly 1 um back from the side of the channel.

This involves a multi-step sizing operation:

decl lyrPoly = dve_import_layer("poly");

decl lyrDiff = dve_import_layer("diff");

decl drcError = dve_export_layer("ads_drc_error'");
decl lyrError102 = dve_export_layer("error102");
decl lyrErrorl103 = dve_export_layer("error103");
decl lyrkError104 = dve_export_layer("errorl104");
decl lyrShrunkPoly = NULL;

decl lyrNewGate = NULL;

decl lyrOldGate = NULL;

decl lyrOversizedOldGate = NULL;

decl lyrBigbhiff = NULL;

decl lyrPolyExtension = NULL;

decl lyrBigPolyExtension = NULL;

decl lyrNestEdges = NULL;

decl lyrPolyFiller = NULL;

decl lyrNewPoly = NULL;

Start by undersizing the original polygon...

lyrShrunkPoly = dve_undersize(lyrPoly, 0.5);

... to produce a new gate polygon:

lyrNewGate = dve_bool_and(lyrShrunkPoly, lyrDiff);
drcError +=dve_drc(all_edges(lyrNewGate), '"new gate");

new gate

e

r e

Next, oversize diff by 1 micron. This produces a region that will be used in a later
operation to cut away the step for the big lead-away.

lyrBigbhiff = dve_oversize(lyrDiff , 1.0);

103

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
Retain the extension of poly that is outside of the oversized diff zone

lyrPolyExtension = dve_bool_not(lyrPoly, lyrBigDiff);

But only the big extensions are required. Determine these zones using the area of the
extensions:

lyrBigPolyExtension = dve_drc(poly_area(lyrPolyExtension) > 3.0);
lyrError102 +=dve_drc(all_edges(lyrBigPolyExtension),
"lyrBigPolyExtension");

big poly extension

/
‘//

So far these rules have identified the new polysilicon for the channel and for the big
extensions, and have discarded small extensions. But the new gate does not have the
required extension. Re-build the 2 micron extension at the new channel length.

lyrOldGate = dve_bool_and(lyrPoly, lyrDiff);
lyrOversizedOldGate = dve_oversize(lyrOldGate, 2.0);

Then use a nest clearance rule to extract the result:

lyrNestEdges = dve_drc(nests(lyrNewGate, lyrOversizedOldGate) <= 2.0,
DVE_RN_TEMPLATE, DVE_RV_OPPOSITE);

lyrPolyFiller = dve_qguadout(lyrNestEdges);

lyrError103 += dve_drc(all_edges(lyrPolyFiller), "lyrPolyFiller");

104

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

poly filler
-

Finally, just assemble all the bits and pieces of compensated poly:

lyrNewPoly = dve_merge(lyrNewGate, lyrBigPolyExtension, lyrPolyFiller);
lyrError104 += dve_drc(all_edges(lyrNewPoly), "lyrNewPoly ");

new poly

/

Example 3 - How to Avoid Spikes

Consider the following use of the quadout operation on a circle:

decl lyrDiel = dve_import_layer("diel");
decl drcError = dve_export_layer("ads_drc_error");
decl lyrTmpl, lyrTmp2, lyrTmp3 = NULL;

lyrTmpl = dve_drc (width (lyrDiel) < 200.0);
lyrTmp2 = dve_drc (compensate (lyrTmpl, 5.0));
lyrTmp3 = dve_quadout (lyrTmp2);

drcError = dve_bool_or (lyrDiel, lyrTmp3);

105

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

error10]

;

chel

Spikes are created because the default template - OPPOSITE - is used. The solution is to
select a different TEMPLATE: instead of the OPPOSITE template we will use an ARC
template:

lyrTmpl = dve_drc(width(lyrDiel) < 200.0, DVE_RN_TEMPLATE, DVE_RV_ARC);

TN

Example 4 - Tips on Accelerating Quadout()

Instead of using the width command (with the problems of TEMPLATES), the command
all_edges can be used:

lyrTmpl = dve_drc(all edges(diel));

lyrTmp2 = dve_drc(compensate (lyrTmpl, 1.0));
lyrTmp3 = dve_quadout (lyrTmp2);

drcError = dve_bool_or(diel, lyrTmp3);

This command is much faster.

© Note
The option "Sort GEM layers" in the Verification tab of the Preferences dialog should not be checked when
all_edges is used.

106

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Polygon Extraction

This section describes the DRC command used for polyextraction from work layer to
output DRC layer. These functions include:

e dve_plg extract() (drc)

dve_plg_extract()

Extracts entire polygons from selected layer. Returns: A polygon layer.

Syntax
dve_plg_extract(workLayer);

where:

workLayer A layer containing polygon data

Example

decl lyrCond = dve_import_layer ("cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error");

decl lyrWork = NULL;

lyrWork = dve_bool_and(lyrCond, lyrCond2);

// Extract the polygon data from work layer to a DRC layer
drcError += dve_plg_extract(lyrWork);

107

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
Polygon Selection
The section include topics related to:

+ Polygon Selection Based on Intrinsic Properties

e Polygon Selection Based on Merge Properties (drc)

e Polygon Selection Based on Edge Relationships (drc)

Polygon Selection Based on Intrinsic Properties

Polygon Selection Based on Intrinsic Properties (output layer contains polygons) selection
functions include:

e poly_area() (drc)
e poly_hole_count() (drc)
e poly_line_length() (drc)

e poly_perimeter() (drc)

poly_area()

Selects polygons based upon area. For polygons with holes, the area of the hole is
subtracted. Returns: A polygon layer.

See also: dve_drc() (drc)

Syntax
dve_drc (poly_area (inLayer) operator value);

where:

inLayer |A polygon layer

operator |< Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal
to

value A real value in layout units

Example

decl lyrCond = dve_import_layer("cond");

decl drcError = dve_export_layer("ads_drc_error");
decl lyrPoly=NULL;

lyrPoly = dve_drc(poly_area(lyrCond) < 100);

108

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
drcError += dve_drc(all_edges(lyrPoly), "Polygon area < 100");

area=25 area =75 area=110

poly_edge_code()

Select polygons based upon edge code information computed during a merge operation.
Select only polygons with have all the given path types. Input layer must be the result of
a merge command. Returns: A polygon layer.

See also: dve_drc() (drc)

Syntax

dve_drc (poly_edge_code (inLayer) [,qualifierName,qualifierValue]);
where:

inLayer A polygon layer produced by a merge operation between two layers
qualifierName, qualifierValue A name, value pair that qualifies the selection

Selection Qualifier: DVE_RN_EDGE_SELECT

Qualifier Resource Value

DVE_RV_ACCEPT_ANY |Select polygon if any path codes are found
DVE_RV_ACCEPT_ALL |(default) Select polygon if all path codes are found
DVE_RV_REJECT_ANY |Reject polygon if any one of the path codes are found
DVE_RV_REJECT_ALL |Reject polygon if exactly all the path codes are found

If both accept and reject values are specified then a polygon passes the test only if it does
have the edge codes specified in the accept command, and does not have the codes in the
reject command.

Edge Code Qualifiers

DVE_RN_PATH_CODE (drc)

Example 1

decl lyrCond = dve_import_layer ("cond");
decl lyrCond2 = dve_import_layer ("cond2");

109

decl
decl
decl
decl
decl

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
drcError = dve_export_layer ("ads_drc_error");
lyrPolyCombine = NULL;
lyrPolyOverlap = NULL;
lyrPolyMerge = NULL;
lyrPoly = NULL;

lyrPolyCombine = dve_bool_or (lyrCond, lyrCond2);
lyrPolyOverlap = dve_bool_and (lyrCond, lyrCond2);
lyrPolyMerge = dve_bool_and (lyrPolyCombine, lyrPolyOverlap);
lyrPoly = dve_drc (poly_edge_code (lyrPolyMerge),

DVE_RN_EDGE_SELECT, DVE_RV_ACCEPT_ANY,
DVE_RN_PATH_CODE, DVE_RV_INT);

drcError += dve_drc (all_edges (lyrPoly), "Conductive metal overlaps");

Example 2

Consider the recognition of a MOS gate:

decl

lyrGate = dve_bool_and(lyrPoly, 1lyrDiff);

But suppose there is a section of the gate where a lyrPoly internally butts diffusion:

diff

bad gate

The problem is how to distinguish between gates G1 (legal) and G2 (illegal). The solution
is to consider the edge codes that make up the polygon. Internally, a bit is set for each
type of edge included in the polygon. So that

« Gate G1 has codes TIB and BIT
o Gate G2 has codes TIB, BIT, INT

The gates can be selected by accepting/rejecting polygons containing the edge code
INT:

lyrGate = dve_bool_and(lyrPoly, lyrDiff);

lyrGoodGate = dve_drc(poly_edge_code(lyrGate), DVE_RN_EDGE_SELECT,
DVE_RV_REJECT_ANY, DVE_RN_PATH _CODE, DVE RV_INT);

lyrBadGate = dve_drc(poly_edge_code(lyrGate), DVE_RN_EDGE_SELECT,
DVE_RV_ACCEPT_ANY, DVE_RN_PATH_CODE, DVE_RV_INT);

drcError += dve_drc(all_edges(lyrGoodGate), "Good Gate");
lyrError102 += dve_drc(all_edges(lyrBadGate), "Bad Gate");

110

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

poly__hole_count()
Selects polygons based upon the number of holes. Returns: A polygon layer.

See also: dve_drc() (drc)

Syntax

dve_drc (poly_hole_count (inLayer) operator numHoles);

where:

inLayer |A polygon layer

operator < Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to

numHoles |An integer value representing the number of holes

Example

Consider a clearance check which is applied only between polygons on layer cond2 that
are contained in the same polygon on layer cond:

111

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

noerror d<100

error o =100

no errar

We create new polygons by subtracting layer cond2 from layer cond. Polygons with > 1
hole are selected using poly_hole_count(). Polygons with no or 1 hole are not selected
because they contain no or 1 polygon on cond2.

lyrPoly = dve_bool_not(cond, cond2);
lyrPolyHole = dve_drc(poly_hole_count(lyrPoly) > 1);

We use a clearance rule to select the inner edges. Qualifiers instruct the checker to direct
the search between edges of same polygon and toward outside the polygon.

lyrEdges = dve_drc(single_clearance(lyrPolyHole)> 1, DVE_RN_EDGE_ANGLES,
DVE_RV_PARALLEL, DVE_RN_POLARITY, DVE_RV_OUTSIDE, DVE_RN_TEMPLATE,
DVE_RV_OPPOSITE, DVE_RN_STRUCTURE, DVE_RV_SAME_POLYGON);

112

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Polygons are extracted with the quadout command.

lyrPolyCmp = dve_quadout(lyrEdges);

Finally, cond2 is subtracted from the new polygon layer and a clearance rule is applied.
This time, the search is directed toward inside the polygons.

lyrPoly = dve_bool_not(lyrPolyCmp, cond2);

error= dve_drc(single_clearance(lyrPoly)> 100, "spacing between cond2 and
cond2 inside cond is > 100.0um", DVE_RN_EDGE_ANGLES, DVE_RV_PARALLEL,
DVE_RN_POLARITY, DVE_RV_INSIDE, DVE_RN_TEMPLATE, DVE_RV_OPPOSITE,
DVE_RN_STRUCTURE, DVE_RV_SAME_POLYGON);

113

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

poly_inter_layer()

Select polygons on one layer (inLayerl) in relation to edges of polygons on another layer
(inLayer2) if any of the given constrains are true. Returns a polygon layer.

See also: dve_drc() (drc)

Syntax
dve_drc (poly_inter_layer (inLayerl, inLayer2) [, qualifierName, qualifierValue]);

where:

\inLayerl, inLayer2 \A polygon layers
\qua/ifierName, qualifierValue \A name, value pair that qualifies the selection

Selection Qualifier: DVE_RN_INTER_SELECT

Qualifier Resource Value

\DVE_RV_ACCEPT\SeIect polygon if any path codes are found
\DVE_RV_REJECT \Reject polygon if any one of the path codes are found

Poly Code Qualifiers: DVE_RN_INTER_CODE

Qualifier Resource Value

114

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

DVE_RV_INSIDE _ONLY (default) The contained top is completely inside bottom and does not touch the
inside of bottom.

DVE_RV_INSIDE TOUCH |The contained top does touch the inside of bottom.
DVE_RV_INSIDE DVE_RV_INSIDE_ONLY or DVE_RV_INSIDE_TOUCH

DVE_RV_INSIDE_ONLY DVE_RV_INSIDE_TOUCH

DVE_RV_OUTSIDE_ONLY [Top is completely outside bottom and does not touch the outside of bottom
DVE_RV_OUTSIDE_TOUCH Top does touch the outside of bottom
DVE_RV_OUTSIDE DVE_RV_OUTSIDE_ONLY or DVE_RV_OUTSIDE TOUCH

T

DVE_RV_OUTSIDE_ONLY DVE_RV_OUTSIDE_TOUCH

DVE_RV_CUT_ONLY Top is partly inside bottom and partly outside bottom with no internal butt with
bottom, that is, it does not touch the inside of bottom

DVE_RV_CUT_TOUCH Top is partly inside bottom and partly outside bottom and does internal butt
(touch) bottom

DVE_RV_CUT_ANY DVE_RV_CUT_ONLY, DVE_RV_CUT_TOUCH

DVE_RV_CUT_ONLY DVE_RV_CUT_TOUCH

DVE_RV_ENCLOSE_ONLY |The contained bottom is completely inside top, and does not touch the inside of

top
DVE_RV_ENCLOSE_TOUCH The contained bottom does touch the inside of top
DVE_RV_ENCLOSE DVE_RV_ENCLOSE_ONLY or DVE_RV_ENCLOSE_TOUCH
DVE_RV_CUT DVE_RV_CUT_ANY, DVE_RV_ENCLOSE
DWVE_RW_EMNCLOSE_OMNLY RvY_ E_TOUCH

Example

decl lyrCond = dve_import_layer ("cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error");
decl lyrPoly = NULL;

115

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
lyrPoly = dve_drc (poly_inter_layer (lyrCond, lyrCond2),
DVE_RN_INTER_CODE, DVE_RV_OUTSIDE);
drcError += dve_drc (all_edges (lyrPoly), "Conductive metal outside");
lyrPoly = dve_drc (poly_inter_layer (lyrCond, lyrCond2),
DVE_RN_INTER_SELECT, DVE_RV_REJECT,
DVE_RN_INTER_CODE, DVE_RV_OUTSIDE_TOUCH,
DVE_RN_INTER_CODE, DVE_RV_INSIDE_ TOUCH);
drcError += dve_drc (all_edges (lyrPoly),
"Conductive metal outside and inside touch");
Example 2

decl lyrCond = dve_import_layer ("cond");
decl lyrCond2 = dve_import_layer ("cond2");
decl drcError = dve_export_layer ("ads_drc_error');
decl lyrPoly = NULL;
lyrPoly = dve_drc (poly_inter_layer (lyrCond, lyrCond2),
DVE_RN_INTER_CODE, DVE_RV_ENCLOSE_TOUCH);
drcError += dve_drc (all_edges (lyrPoly), "Conductive metal enclose touch");

poly_line_length()
Selects polygons based upon the minimum line length. Returns: A polygon layer.

See also: dve_drc() (drc)

Syntax

dve_drc (poly_line_length (inLayer) operator distance [, qualifierName,
qualifierValue]);

where:
inLayer A polygon layer
operator < Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to
value A real value in layout units

qualifierName, qualifierValue A name, value pair that qualifies the rule

Line Length Resource Qualifier: DVE_RN_LINE_LENGTH

Qualifier Resource Value

116

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
DVE_RV_MIN_LINE |(default) Select based upon minimum line length of polygon
DVE_RV_MAX_LINE |Select based upon maximum line length of polygon

Examples

1. Check based on the maximum line length.

decl lyrCond = dve_import_layer ("cond");

decl drcError = dve_export_layer ("ads_drc_error');

decl lyrPoly = NULL;

lyrPoly = dve_drc (poly_line_length (lyrCond) <= 10.0,
DVE_RN_LINE_LENGTH, DVE_RV_MAX_LINE);

drcError += dve_drc (all_edges (lyrPoly), "Polygon length < 10.0");

Check based on the minimum line length.

decl lyrCond = dve_import_layer ("cond");

decl drcError = dve_export_layer ("ads_drc_error");

decl lyrPoly = NULL;

lyrPoly = dve_drc (poly_line_length (lyrCond) <= 20.0,
DVE_RN_LINE_LENGTH, DVE_RV_MIN_LINE);

drcError += dve_drc (all_edges (lyrPoly), "Polygon length < 20.0");

I |

100

For example 1,None of the above polygon gets selected. As the check is applicable for
maximum line length,so both 100 and 50 is greater 10.

For example 2,Both of them gets selected. As check also takes into consideration the
minimum line length that is 5.

poly_path_count()

Select polygons based upon path count information computed during a merge operation.
Input layer must be the result of a merge command. Returns: A polygon layer.

See also: dve_drc() (drc)

Syntax
dve_drc (poly_path_count (inLayer) operator distance [, qualifierName, qualifierValue]);

where:

117

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

inLayer A polygon layer produced by a merge operation between two layers
operator < Less than

<= Less than or equal to

== Equal to

> Greater than
>= Greater than or equal to

value A real value in layout units
qualifierName, qualifierValue A name, value pair that qualifies the rule

Path Count Qualifier: DVE_RN_PATH_COUNT

Qualifier Resource Value:

DVE_RV_PATH_COUNT (default) Select based upon path count of top polygon
DVE_RV_ANTI_PATH_COUNT |Select based upon path count of bottom polygon

Path Code Qualifiers

DVE_RN_PATH_CODE (drc)

Example 1

decl lyrCond = dve_import_layer ('"cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error");

decl lyrPolyMerge = NULL;

decl lyrPoly = NULL;

lyrPolyMerge = dve_bool_not (lyrCond, lyrCond2);

lyrPoly = dve_drc (poly_path_count (lyrPolyMerge) >= 1,
DVE_RN_PATH_CODE, DVE_RV_TOP,
DVE_RN_PATH_CODE, DVE_RV_INT);

drcError 4= dve_drc (all_edges (lyrPoly),
"Metal layer outside and butting internally");

Example 2

See poly_path_length(), Example 2 (drc)

poly_path_length()

Select polygons based upon path length properties computed during a merge operation.
Input layer must be the result of a merge command. Returns: A polygon layer.

See also: dve_drc() (drc)

Syntax

dve_drc (poly_path_length (inLayer) operator distance [qualifierName, qualiferValue]);

118

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

where:
inLayer A polygon layer produced by a merge operation between two layers
operator < Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to
value A real value in layout units

qualifierName, qualifierValue A name, value pair that qualifies the rule

Path Type Qualifier: DVE_RN_PATH_LENGTH

Qualifier Resource Value

DVE_RV_MIN_PATH Select based upon minimum path length of top polygon
DVE_RV_MAX_PATH Select based upon maximum path length of top polygon
DVE_RV_TOTAL_PATH Select based upon total path length of top polygon

VE_RV_ MIN_ANTI_PATH Select based upon minimum path length of bottom polygon
DVE_RV_MAX_ANTI_PATH |Select based upon maximum path length of bottom polygon
DVE_RV_TOTAL_ANTI_PATH |Select based upon total path length of bottom polygon

Path Code Qualifiers

DVE_RN_PATH_CODE (drc)

Example 1

decl lyrCond = dve_import_layer ("cond");
decl lyrCond2 = dve_import_layer ("cond2");
decl drcError = dve_export_layer ("ads_drc_error'");
decl lyrPolyMerge = NULL;
decl lyrPoly = NULL;
lyrPolyMerge = dve_bool_not (lyrCond, lyrCond2);
lyrPoly = dve_drc (poly_path_length (lyrPolyMerge) < 20.0,
DVE_RN_PATH_CODE, DVE_RV_TOP,
DVE_RN_PATH_LENGTH, DVE_RV_MIN_PATH);
drcError += dve_drc (all_edges (lyrPoly),
"Polygon path length < 20.0");

Example 2

Consider the rule to extract a transistor channel formed by the overlap of polysilicon and
diffusion:

lyrChannel = dve_bool_and(lyrPoly, lyrDiff);

119

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

diffusion (BOTTOM)

polysilicon (TOP)

The edge codes can be used to determine the width and the length of the transistor
channel. The ends (source and drain) of the channel are formed by TIB edges. The sides
of the channels are formed by BIT edges. In order to measure the width of the channel,
define which edges of the polygon constitute the path of interest. In this case, specify that
the path is made up of TIB edges:

dve drc(...DVE_RN_PATH_CODE, DVE RV TIB,...);

To check the channel width as path length grater than 10:

lyreEnds = dve_drc(poly_path_length(lyrChannel) > 10, DVE_RN_PATH_CODE,
DVE_RV_TIB, DVE_RN_PATH_LENGTH, DVE_RV_MAX_PATH);
drcError += dve_drc(all_edges(lyrSides), "long channel");

To select 'thin' channels :

lyrSides = dve_drc(poly_path_length(lyrChannel) < 2, DVE_RN_PATH_CODE,
DVE_RV_TIB, DVE_RN_PATH_LENGTH, DVE_RV_MIN_ANTI_PATH):
drcError += dve_drc(all_edges(lyrSides), "thin channel");

Badly formed channels can be rejected using poly_path_count():

extracted channel polygon is
badly formed because it has
only one path of type TIB

lyrGoodChannel = dve_drc(poly_path_count(lyrChannel) == 2, DVE_RN_PATH_CODE,
DVE_RV_TIB, DVE_RN_PATH COUNT, DVE_RV_PATH COUNT);

This rule means that you can accept only good channels when the number of TIB paths
equal 2.

Polygon Selection Based on Edge Relationships

Polygon Selection Based on Edge Relationships (output layer contains polygons) selection

120

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
function includes: poly_inter_layer() (drc).

poly_perimeter()

Selects polygons based upon the total length of the outside edges. Returns: A polygon
layer.

See also: dve_drc() (drc)

Syntax
dve_drc (poly_perimeter (inLayer) operator distance);

where:

inLayer |A polygon layer

operator |< Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal
to

distance A real value in layout units

Example

decl lyrCond = dve_import_layer ("cond");

decl drcError = dve_export_layer ("ads_drc_error'");

decl lyrPoly = NULL;

lyrPoly = dve_drc (poly_perimeter (lyrCond) < 100.0);

drcError 4= dve_drc (all_edges (lyrPoly), "Polygon perimeter < 100.0");

For the above polygons,

In the first case,the perimeter of the polygon is 250 which is greater than 100. Hence the
polygon doesnt get selected.

In the second case,the perimeter of the polygon is 75 which is less than 100. Hence the
polygon gets selected.

Polygon Selection Based on Merge Properties

Polygon Selection Based on Merge Properties selection functions include:
poly_edge_code() (drc), poly_path_count() (drc), and poly_path_length() (drc).

Polygon merge qualifier commands constrain the selection of edges based upon a specified

edge code. All of the commands in this section are based upon edge information computed
during a merge operation.

121

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Convention for TOP and BOTTOM layers
Some of the notation in this section depends on a naming convention. The first mentioned

layer is called the TOP layer and the second mentioned layer is called the BOTTOM layer.
For example,

lyrPoly = dve_bool_and(cond, cond2);
Layer cond is TOP, layer cond2 is BOTTOM.

This is an arbitrary, rather than a descriptive designation. For example the TOP layer
might be "metal" and the BOTTOM layer might be "contact".

Using edge codes

When polygon TOP and polygon BOTTOM merge, a set of vertices consisting of the
intersection points is derived. Each resultant edge between pairs of these vertices has a
unique " edge_code' that describe its relationship to other edges.

Consider two polygons on the TOP and BOTTOM levels (vertices at the intersection are
shown as asterisks '*"):

TTTTITTTTITTITTT polvgon TOP

T T
*bbkbbbbbbkbbb *BEEEBEEBEEE polvgon BOTTCM
I t B
I t B
*bbkbbkbbbbkkbh “EBBEEE B
T T B B
T T B B
T *BBEBEB B
T E B
T E B
T *BBBBEBBEBBE
T T
TTTTTTTTTTTTTT

Merging the two polygons produces a merged database containing six types of edges.
Each type is shown with a different character:

TOP_OUTSIDE_BOTTOM (T) |polygon TOP outside polygon BOTTOM
BOTTOM_OUTSIDE_TOP (B) |polygon BOT outside polygon TOP
TOP_INSIDE_BOTTOM (t) |polygon TOP inside polygon BOTTOM
BOTTOM_INSIDE_TOP (b) |polygon BOT inside polygon BOTTOM
INTERNAL (I) edges of TOP and BOTTOM butting internally
EXTERNAL (E) edges of TOP and BOTTOM butting externally

A side effect of the algorithm is that corner-to-edge and corner-to-corner interactions are
not evaluated. For instance, when checking to see if two polygons touch, a contact
between a corner and an edge, or between two corners is not counted.

For example, these polygons are not classified as touching:

122

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Edge Code Qualifier

The following qualifier is used extensively in polygon selection commands:

DVE_RN_PATH_CODE

Qualifier Resource Value:

DVE_RV_TOP |(default) Select edges on top that are outside bottom
DVE_RV_BOT |Select edges on bottom that are outside top

DVE_RV_TIB |Select edges on top that are inside bottom

DVE_RV_BIT |Select edges on bottom that are inside top

DVE_RV_INT |Select edges on top and bottom that are butting internally
DVE_RV_EXT |Select edges on top and bottom that are butting externally

Definition of paths and anti-paths
A "path" is a set of coincident edges of a polygon, all of the same type. Other paths of the

polygon which do not satisfy the requested path type are called the "anti-paths" of the
polygon.

123

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Sizing Operations on Polygons

This section describes the DRC commands used for sizing operations on polygons. These

commands include:
« dve oversize() (drc)

e dve undersize () (drc)

dve_oversize()

Moves edges of polygons by the given sizing distance. All edges are moved in parallel

toward outside of polygons.

Syntax
dve_oversize(inLayer, size);
where:

inLayer A polygon layer
size A real value in Layout units of the amount by which the size is to be increased

Example

decl lyrCond = dve_import_layer ("cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error");

decl lyrPoly = NULL;

decl lyrOversize = NULL;

lyrPoly = dve_drc (poly_inter_layer (lyrCond, lyrCond2),
DVE_RN_INTER_CODE, DVE_RV_OUTSIDE);

drcError += dve_drc (all_edges (lyrPoly), "Conductive metal outside");

lyrOversize = dve_oversize(lyrPoly, 5);

drcError 4= dve_drc (all_edges (lyrOversize), "Oversize Conductive metal

outside");

124

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
dve_undersize ()

Moves edges of polygons by the given sizing distance. All edges are moved in parallel
toward inside of polygons.

Syntax
dve_undersize(inLayer, size);

where:

inLayer A polygon layer
size A real value in Layout units of the amount by which the size is to be decreased

Example

decl lyrCond = dve_import_layer ("cond");

decl lyrCond2 = dve_import_layer ("cond2");

decl drcError = dve_export_layer ("ads_drc_error'");

decl lyrPoly = NULL;

decl lyrUndersize = NULL;

lyrPoly = dve_drc (poly_inter_layer (lyrCond, lyrCond2),
DVE_RN_INTER_CODE, DVE RV _OUTSIDE);

drcError += dve_drc (all_edges (lyrPoly), "Conductive metal outside");

lyrUndersize = dve_undersize(lyrPoly, 5);

drcError += dve_drc (all_edges (lyrUndersize), "Undersize Conductive metal

outside");

125

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Troubleshooting Design Rule Checker

If a dve_drc command is not producing the expected output, try the following debugging
techniques:

« Resolve any compile errors or warnings.

o Check to make sure the dve_drc command has an error message.

» If possible, always use < for clearance rules to ensure a bounded check.

o Inspect the input layers using the layer editor. Send the data to an export layer (be
sure to include an error message), and view the data using Load Results.

Layer Management Errors (101-199)

101 Import layer must be a design layer

Import and export layers must be defined as physical design layers

102 Export layer must be a design layer

Import and export layers must be defined as physical design layers

103 No output layer

An output layer is required on the left-hand side of the equal sign (=).

104 Layer parameter is uninitialized

Input layers must have previously appeared on the left-hand side of an equal
sign (=).

105 Layer parameter is an export layer

An input layer that has been declared as an export layer cannot be used as an
input layer.

106 No import layers defined

At least one input layer must be defined.

107 No export layers defined

126

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
At least one export layer must be defined.

108 Rules do not generate output

At least one rule must assign data to an export layer.

Layer Management Warnings (201-299)

201 Redefining an import layer

A layer that has been declared as an import layer is being redefined.

202 Redefining an export layer

A layer that has been declared as an export layer is being redefined.

Command Usage Errors (301-399)

301 Expecting layer parameter

Parameter is uninitialized or is not a layer. Please see documented command
syntax.

302 Expecting a string parameter

Parameter is uninitialized or is not a string. Please see documented command
syntax.

303 Expecting an integer parameter

Parameter is uninitialized or is not an integer number. Please see documented
command syntax.

304 Expecting a real parameter

Parameter is uninitialized or is not a real number. Please see documented
command syntax.

127

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

305 Invalid angle parameter

Expecting a real number greater than 0 and less than 360 with only one decimal
point of precision.

306 Command is a dve_drc subfunction

Command must appear as the first parameter to a dve_drc subfunction.
Command is not valid outside the context of a dve_drc command.

307 Unsupported operator

The dve_drc expression contains an unrecognized operator. Valid operators are

< |Less than

<= |Less than or equal to
== |[Equal to

> |Greater than
>=Greater than or equal to

308 Unsupported set operator

The command is missing the left-hand equal sign for assignment to an output
layer.

309 Missing elements of expression

The command requires an expression. Please see the documented command
syntax.

310 Expecting polygon layer
Polygon layers are produced as the result of polygon selection or boolean

commands. Edge operation commands perform segment merging, sizing and
polygon extraction on selected edges.

311 Expecting edge layer
Edge layers are produced as the result of an edge selection, edge compensation,

or edge operation command. Polygon commands perform polygon selection and
boolean operations on polygons.

128

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
312 Expecting boolean merge layer

Polygon selection commands based on merge properties only accept input layers

that are the direct result of a boolean polygon merge operation such as
dve_bool_and.

313 Expecting dve_drc subfunction

The dve_drc command must always appear with a dve_drc subfunction as the
first parameter.

314 Nested merge not allowed

The result of a dve_merge command cannot be used as the input to another
dve_merge command.

315 Invalid use of compensate layer

Output layer of compensate can only be used as input to dve_plgout and
dve_quadout commands.

Command Usage Warnings (401-499)

401 Expression ignored

Command does not require an expression

402 Qualifier ignored

Resource qualifiers that do not apply are ignored. Please see documented
command syntax.

403 Using default polarity

A polarity specification is required for commands double_clearance and
single_clearance. If no polarity is specified, a polarity DVE_RV_OUTSIDE is used.

404 Using default template

A template specification is required for commands double_clearance and
single_clearance. If no template is specified, a template DVE_RV_OPPOSITE is

129

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
used.

405 Clearance qualifiers ignored

Clearance qualifiers require an upper bound and are currently not supported for
unbounded greater-than (>) or greater-than-or-equal (>=). This can be
corrected by using range comparisons.

406 Using layer name as message string

No message output is specified in the command. A default message is generated
based on the output layer name.

407 There are rules larger than the circuit size

Rules much larger than the circuit may cause the DRC engine to enter into a
very long loop to check the circuit and clean up the temporary files.

130

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Using Calibre DRC Link

You can use Calibre DRC to check your layout against design rules by choosing the Calibre
DRC engine (a Calibre rule file is required). When you choose the Calibre DRC engine, ADS
exports your layout design to GDSII, writes a Calibre DRC control file, executes a design
rule check in Calibre, and displays the ASCII-formatted Calibre DRC results in the ADS
DRC results viewer.

ADS-Calibre DRC Link runs in two modes: Local and Remote. Use Local if ADS and Calibre
are available on the same Linux or Solaris machine. Use Remote if you are running ADS

on a Windows, Linux, or Solaris machine and have network access to Calibre installed on a
different Linux or Solaris machine.

Running Calibre DRC in Local Mode
To prepare your Linux or Solaris machine:

1. Declare the MGLS_LICENSE FILE environment variable.
2. Declare the MGC_HOME environment variable.

To run Calibre DRC in Local Mode:

1. From your Layout window, click Tools > DRC.
2. Choose Calibre as the DRC Engine and click Settings in the Design Rule Check
dialog box.

M Design Rule Check

DR.C Engine |Calibre v” Settings

Rules list
Rule location: |W0rkspace -
Rule Mame Rule File

calibre drc rule test Wid Spcng. txt

Rule file |_'..\'rk'|,ueriﬁcation'u'ules'n,test_\"a’id_Spmg.txt| [Browse...

Create Width/Spacing Rule...

Check area

() Full design

O Current window view

Job name |dru:_test_Iib8_best_CaIbr_\":'id_Spmg_caIibrEDRC |

[Run H Cancel][Help]

3. Choose Local for the Run mode in the Calibre DRC Link dialog box.

131

5.

6.
7.

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Bun mode

. Remote Environment

Machine name I

Femote user name I

Femate passward |

Calibre installation path |fhcumefuser1fc:alibre

Calibre license path |1 Flr@calibrelic.seryer.com

[T Usze PUTTY

Ok I Cancel |

You may enter the Calibre installation and license path values. In such cases the
values entered in the dialog would take precedence over the corresponding values set
in the MGLS_LICENSE FILE and MGC_HOME variable.

Click OK in the Calibre DRC Link dialog box to return to the Design Rule Check dialog
box.

Click Browse to choose the Rule file and click OK.

Click Run to execute the Calibre DRC.

Running Calibre DRC in Remote Mode

In remote mode, Calibre DRC is run on a remote machine using a secure shell.

To prepare your remote machine

1.
2.

Declare the MGLS LICENSE FILE environment variable.

Declare the MGC_HOME environment variable. Alternatively, MGC_HOME can be set by
specifying Calibre installation path in the settings dialog. If MGC_HOME is specified in
the settings dialog then it is not read from the system environment.

Declare the DRC_MAPPED_DRIVE environment variable. Mount the home directory of
the remote UNIX machine onto your local machine and set the value of

DRC_MAPPED DRIVE to the mount path. For example if you have mounted your remote
/home/userl onto the Z: drive of your Windows machine, then set

DRC_MAPPED DRIVE to Z:. Setting the variable bRC_MAPPED DRIVE is optional. If it is not
set, FTP would be used to transfer files between the local and remote machine.
Therefore, the remote FTP port should not be blocked by the administrator.

Ensure that secure shell, ssh is available and configured in the local and remote
machine. For any user, it requires one time setup to configure ssh. ssh configuration
requires generation of a private-public key pair with the below steps.

© Note
In the settings dialog, the field for which user input is mandatory has bold font.

Generating a Private-Public Key Pair in Windows

[EY

Click Start > Run and enter cmd to open a DOS prompt dialog box.

Enter echo $HOME% to check your home directory.

Ensure that the home directory is the same as the home directory set in ADS. ADS
home directory can be confirmed by running the command
de_info(getsysenv("HOME")); in ADS command line tool (Tools > Command Line).
Enter cd $HOMES to go to home directory.

Create the directory .ssh in the home directory by entering

132

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
mkdir .ssh

5. Generate a private-public key pair by entering
ssh-keygen -t dsa -f $SHOME/.ssh/id dsa -P ''

If you get the message for ssh-keygen not found then include $HPEESOF _DIR/tools/bin
in your PATH.

This should result in two files, id_dsa (private key) and id_dsa.pub (public key).

Generating a Private-Public Key Pair in Solaris/Linux

1. Enter echo $HOME to check your home directory.
Ensure that the home directory is the same as the home directory set in ADS. ADS
home directory can be confirmed by running the command
de_info(getsysenv("HOME")); in ADS command line tool (Tools > Command Line).
Enter cd $HOME to go to home directory.
3. Create the directory .ssh in the home directory by entering

mkdir .ssh

4, Generate a private-public key pair by entering
ssh-keygen -t dsa -f $SHOME/.ssh/id dsa -P ''

N

This should result in two files, id_dsa (private key) and id_dsa.pub (public key).
Copy the public key to the remote machine:

1. Copy file id_dsa.pub from local machine to the remote machine.
2. On the remote machine run the following commands:

$ "cat id_dsa.pub >> $HOME/.ssh/authorized_keys"
$ "chmod 0600 $HOME/.ssh/authorized_keys"

Depending on the version of OpenSSH, the file authorized_keys2 may also be
required:

$ "cat id_dsa.pub >> $HOME/.ssh/authorized_keys2"
$ "chmod 0600 $HOME/.ssh/authorized_keys2"

An alternative is to create a link from authorized_keys to authorized_keys2:

$ "cd $HOME/.ssh "
$ "1In -s authorized_keys authorized_keys2"

On the local (client) machine, test the results by connecting to the remote (server)
machine:

$ "ssh -i $HOME/.ssh/id_dsa <remote_machine_name>"

When you login the first time, you may be asked for confirmation yes/no. Enter yes to

proceed. If everything is correct, you can login without any password to the remote
machine.
If there is an issue, you may need to consult your system administrator.

To run Calibre DRC in Remote Mode

1. From your Layout window, click Tools > DRC.

133

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker
2. Choose Calibre as the DRC Engine and click Settings in the Design Rule Check
dialog box.
3. Choose Remote for the Run mode in the Calibre DRC Link dialog box.

Run mode Remote w

Remote Environment

Machine name machine 1. xyz.com
Remote user name | useri

Remote password

Calibre installation path | fhomefuser 1/calibre
Calibre license path 1717@calibrelic. server.com

[use puTTY

[Ok, ” Cancel l

4, Enter the Machine name and the Remote user name.

5. You may enter the Calibre installation and license path values. In such cases the
values entered in the dialog would take precedence over the corresponding values set
in the MGLS_LICENSE FILE and MGC_HOME variable.

6. Click OK in the Calibre DRC Link dialog box to return to the Design Rule Check dialog
box.

7. Click Browse to choose the Rule file and click OK.

8. Click Run to execute the Calibre DRC.

© Note
1. If you do not wish to generate the SSH Private/Public Keys, then you can click the "Use PuTTY"
option for ADS running on Windows machine. In such cases, you will be prompted to enter the
password every time you run a LVS job. The PuTTY installation path MUST be specified in your
Windows PATH environment variable.

1. If you would like certain environment variables (for example, variables that are specific to
your DRC Rule deck) to be made available to Calibre, you may do so by defining them in a file
calibre_config.sh
This file MUST be kept inside your ADS workspace folder. If ADS finds this file while running
Calibre DRC, it would first source this file on the remote UNIX machine before actually
invoking Calibre.

This provides you the flexibility to do any customization (for example: defining Rule Deck
specific environment variables, copying other rules deck files etc) in the file calibre_config.sh

Viewing Calibre DRC Link Results

After the Calibre DRC results are available, ADS translates the Calibre results file to ADS
readable format, displays Calibre DRC results in the ADS DRC Results Viewer and
highlights the errors in ADS layout design.

134

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Nide b X ’9\?" _7’ *ﬁ*@@@@ﬂ

TLines-Microstrip

Palette

=1 DRC Results Viewer

H e B &

i
£y

MEOEHD Design |drc_test_lib3:test_Calbr_Wid_Spcng:layout
% E Job name |drc_test libd__test_Calbr_Wid_Spcng_calibreDRC
MEstub Mefil
Current Fixed

L
— -I‘ﬂ
Mclin Mcorn Error

=t Minimum Gate width is 4.0
"::::3‘ -I':lj i -240.903 235.758
Morosa || Mourve Minimum Via2 width is 3.0

Minimum metald width is 4.5

-I'_)jz oy Minimum spacing bfw Gate and Via2 is 2
Meurve || MGap Minimum spacing bfw Via2 and metald is 1
=t || I
MIGAF1 MICAPZ

[] auto zoom [] Auto select

Design rule:

1 I || e MNumber of errors: 5

Select: Enter the starting point 0items ads_annotate:ads_drawingl -185.000, 215.000 um

135

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Using Assura DRC Link

You can use Assura to check your layout against design rules by choosing the Assura DRC
engine (an Assura rule file is required). When you choose the Assura DRC engine, ADS
uses the command line to export your layout design to GDSII, write an RSF input file,
execute a design rule check in Assura, and display the ASCII-formatted Assura DRC
results in the ADS DRC results viewer.

ADS-Assura DRC Link runs in two modes: Local and Remote. Use Local if ADS and Assura
are available on the same Linux or Solaris machine. Use Remote if you are running ADS
on a Windows, Linux, or Solaris machine and have network access to Assura installed on a
different Linux or Solaris machine.

© Note
ADS-Assura DRC link is supported for Assura version 3.2 onwards.

Running Assura DRC in Local Mode

To prepare your Linux or Solaris machine:

1. Declare the ASSURA_LICENSE FILE environment variable.
2. Declare the ASSURA_INSTALLATION_DIR environment variable.

To run Assura DRC in Local Mode"

1. From your Layout window, click Tools > DRC.
2. Choose Assura as the DRC Engine and click Settings in the Design Rule Check
dialog box.

M Design Rule Check

DR.C Enging |Assura ‘Vl[Settings

Rules list

Rule location: |\"u'|:|rkspace w

Rule Mame | Rule File

Rule file LraDRC_TEst_'n'rKfAs_Endusure_RuIE2.ruI| [Browse...

Create Width/Spacing Rule...

Check area

(%) Full design

Current window view

Job name |.-'-\ssuraDRC_Test_Iib_ENC 1_assuraDRC |

[Run H Cancel H Help]

3. Choose Local for the Run mode in the Assura DRC Link dialog box.

136

[) O,

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Run mode

- Remote enviranment

hachine name |

Remaote user name |

Remate password |

Ok I Cancel |

Click OK in the Assura DRC Link dialog box to return to the Design Rule Check dialog
box.

. Click Browse to choose the Rule file and click OK.
. Click Run to execute the Assura DRC.

Running Assura DRC in Remote Mode

In remote mode, Assura DRC is run on a remote machine using a secure shell.

To prepare your remote machine:

1.
2.
3.

Declare the ASSURA_LICENSE_FILE environment variable.

Declare the ASSURA_INSTALLATION_DIR environment variable.

Declare the DRC_MAPPED_DRIVE environment variable. Mount the home directory of
the remote UNIX machine onto your local machine and set the value of
DRC_MAPPED_DRIVE to the mount path. For example if you have mounted your remote
/home/userl onto the Z: drive of your Windows machine, then set

DRC_MAPPED DRIVE to Z:. Setting the variable bRC_MAPPED DRIVE is optional. If it is not
set, FTP would be used to transfer files between the local and remote machine.
Therefore, the remote FTP port should not be blocked by the administrator.

Ensure that secure shell is available and configured in the remote machine. For any
user, it requires one time setup to configure ssh. ssh configuration requires
generation of a private-public key pair with the below steps.

Generating a Private-Public Key Pair in Windows

[

Click Start > Run and enter cmd to open a DOC prompt dialog box.

Enter echo $HOME% to check your home directory.

Ensure that the home directory is the same as the home directory set in ADS. ADS
home directory can be confirmed by running the command
de_info(getsysenv("HOME")); in ADS command line tool (Tools > Command Line).
Enter cd $HOME% to go to home directory.

Create the directory .ssh in the home directory by entering

mkdir .ssh

Generate a private-public key pair by entering
ssh-keygen -t dsa -f id_dsa -P "'

If you get the message for ssh-keygen not found then include $HPEESOF DIR/tools/bin
in your PATH.

This should result in two files, id_dsa (private key) and id_dsa.pub (public key).

Generating a Private-Public Key Pair in Solaris/Linux

137

N

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

Enter echo $HOME to check your home directory.

Ensure that the home directory is the same as the home directory set in ADS. ADS
home directory can be confirmed by running the command
de_info(getsysenv("HOME")); in ADS command line tool (Tools > Command Line).
Enter cd $HOME to go to home directory.

Create the directory .ssh in the home directory by entering

mkdir .ssh

Generate a private-public key pair by entering
ssh-keygen -t dsa -f $SHOME/.ssh/id dsa -P ''

This should result in two files, id_dsa (private key) and id_dsa.pub (public key).

Copy the public key to the remote machine:

1.
2.

Copy file id_dsa.pub from local machine to the remote machine.
On the remote machine run the following commands:

$ "cat id_dsa.pub >> $HOME/.ssh/authorized_keys"
$ "chmod 0600 $HOME/.ssh/authorized_keys"

Depending on the version of OpenSSH, the file authorized_keys2 may also be
required:

$ "cat id_dsa.pub >> $HOME/.ssh/authorized_keys2"
$ "chmod 0600 $HOME/.ssh/authorized_keys2"

An alternative is to create a link from authorized_keys to authorized_keys2:

$ "cd $HOME/.ssh "
$ "1ln -s authorized_keys authorized keys2"

On the local (client) machine test the results by connecting to the remote (server)
machine:

$ "ssh -i $HOME/.ssh/id_dsa <remote_machine_name>"

When you login the first time, you may be asked for confirmation yes/no. Enter yes to
proceed. If everything is correct, you can login without any password to the remote
machine.

If there is an issue, you may need to consult your system administrator.

To run Assura DRC in Remote Mode:

1.
2.

3.

From your Layout window, click Tools > DRC.

Choose Assura as the DRC Engine and click Settings in the Design Rule Check
dialog box.

Choose Remote for the Run mode in the Assura DRC Link dialog box.

138

Advanced Design System 2011.01 - ADS Desktop Design Rule Checker

M Settings @@

Run mode Remote “

Remote environment
Machine name machine 1.xyz.com
Remote user name |user1

Remote password |sessssss

I OK. H Cancel l

4. Enter the Machine name and the Remote user name.

5. Click OK in the Assura DRC Link dialog box to return to the Design Rule Check dialog
box.

6. Click Browse to choose the Rule file and click OK.

7. Click Run to execute the Assura DRC.

© Note
By default, an ADS-Assura DRC is executed on the entire layout. To run Assura DRC on a subsection of
your layout, specify the coordinates of the desired area in the rule file.

Viewing Assura DRC Link Results

After the Assura DRC results are available, ADS generates a compact report file from the
Assura error with summary files (.err and .sum files), translates the report file to the Jade
format, then displays Assura DRC Link results in the ADS DRC Results Viewer.

INERA L HHIX 9IS 460998 223 Rt T -
E"I'Lines-Mi:rusirip v O J:— I.i.unlf\ v,s default:draning VT—“CS“‘F""E@\[

pa\ette

f= DRC Results Viewer

Maclm Macllnﬁ

Hae & &&

MM Design | AssuraDRC_Test_lib:ENC 1:layout
: .. Job name |AssuraDRC_Test_lb_ EMC1_assuraDRC
MBstub il Current Foed
| HEEEH:
nu Sz X Xt
| = MO inside of M1
| 'ﬁ}) 1 55,090 13,580
P Meraso || Mourve :-103.860 : 13.980
Il &% | oo
|| Houree || Masp
6=l
| Micart || Micar2
(& w
Il MICAPZ || HICARPS |
|]JE M [Auto zoom [] Auto select |
Design rule:
| ﬂu e Number of errors: 2 :
| Miangs || MLEF i

| | | ey [[[" >

Select: Enter the starting point 0 items default:drawing -52.280, 85.300 um

139

	 DRC Quick Start
	 DRC Message Window
	 DRC Engine
	 Rule Registry File
	 Rule Directories
	 Setting Up a Quick DRC
	 Setting Up a DRC with Predefined Rules
	 Viewing DRC Results
	 Opening a DRC Example Workspace
	 Setting DRC Memory Use and Performance

	 Writing Design Rules
	 Extension and Intrusion Definitions
	 Anatomy of a Simple DRC Rule File
	 Layer Management
	 Recognizing Devices in Flattened Layouts
	 Complete DRC Example
	 Additional DRC Examples

	 DRC Functions (alphabetical)
	 DRC Functions (by category)
	 Import and Export Layers
	 Edge Selection
	 Edge Operations
	 Polygon Selection
	 Polygon Operations
	 DRC Job Management

	 DRC Job Management
	 dedrc_run_drc_ex

	 DRC Match Functions for Error Checking
	 Match AEL Function
	 Complete Match AEL Function
	 Running Match AEL function

	 Boolean Operations on Edges
	 all_edges()
	 invert_edges()

	 Conditional Selection
	 compensate()
	 contains()
	 corner_edges()
	 Edge Selection Based on Grid
	 de_touch()
	 double_clearance()
	 dve_combine()
	 Edge Selection Based On Clearance
	 dve_drc()
	 dve_drc_group()
	 dve_segsize()
	 Edge Qualifiers
	 Edge Selection Based on Corners
	 external()
	 gap()
	 internal()
	 nests()
	 notch()
	 off_grid()
	 Edge Compensation
	 single_clearance()
	 spacing()
	 width()

	 DRC Layer Management Commands
	 dve_import_text_layer()
	 dve_export_layer()
	 dve_identify_cell_layer()
	 dve_import_cell_layer()
	 dve_import_layer()

	 Macros
	 intrusion()
	 protrusion()

	 Merge Operations on Polygons
	 dve_bool_and()
	 dve_bool_not()
	 dve_bool_or()
	 dve_merge()
	 dve_self()
	 dve_self_merge()
	 Example for Performing Boolean Operations

	 Operations for Polygon Extraction from Edges
	 dve_plgout()
	 dve_quadout()

	 Polygon Extraction
	 dve_plg_extract()

	 Polygon Selection
	 Polygon Selection Based on Intrinsic Properties
	 poly_area()
	 poly_edge_code()
	 poly_hole_count()
	 poly_inter_layer()
	 poly_line_length()
	 poly_path_count()
	 poly_path_length()
	 Polygon Selection Based on Edge Relationships
	 poly_perimeter()
	 Polygon Selection Based on Merge Properties

	 Sizing Operations on Polygons
	 dve_oversize()
	 dve_undersize ()

	 Troubleshooting Design Rule Checker
	 Layer Management Errors (101-199)
	 Layer Management Warnings (201-299)
	 Command Usage Errors (301-399)
	 Command Usage Warnings (401-499)

	 Using Calibre DRC Link
	 Running Calibre DRC in Local Mode
	 Running Calibre DRC in Remote Mode
	 Viewing Calibre DRC Link Results

	 Using Assura DRC Link
	 Running Assura DRC in Local Mode
	 Running Assura DRC in Remote Mode
	 Viewing Assura DRC Link Results

